首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Traffic crashes occurring on freeways/expressways are considered to relate closely to previous traffic conditions, which are time-varying. Meanwhile, most studies use volume/occupancy/speed parameters to predict the likelihood of crashes, which are invalid for roads where the traffic conditions are estimated using speed data extracted from sampled floating cars or smart phones. Therefore, a dynamic Bayesian network (DBN) model of time sequence traffic data has been proposed to investigate the relationship between crash occurrence and dynamic speed condition data. Moreover, the traffic conditions near the crash site were identified as several state combinations according to the level of congestion and included in the DBN model. Based on 551 crashes and corresponding speed information collected on expressways in Shanghai, China, DBN models were built with time series speed condition data and different state combinations. A comparative analysis of the DBN model using flow detector data and a static Bayesian network model was also conducted. The results show that, with only speed condition data and nine traffic state combinations, the DBN model can achieve a crash prediction accuracy of 76.4% with a false alarm rate of 23.7%. In addition, the results of transferability testing imply that the DBN models are applicable to other similar expressways with 67.0% crash prediction accuracy.  相似文献   

2.
Short-term traffic flow prediction is an integral part in most of Intelligent Transportation Systems (ITS) research and applications. Many researchers have already developed various methods that predict the future traffic condition from the historical database. Nevertheless, there has not been sufficient effort made to study how to identify and utilize the different factors that affect the traffic flow. In order to improve the performance of short-term traffic flow prediction, it is necessary to consider sufficient information related to the road section to be predicted. In this paper, we propose a method of constructing traffic state vectors by using mutual information (MI). First, the variables with different time delays are generated from the historical traffic time series, and the spatio-temporal correlations between the road sections in urban road network are evaluated by the MI. Then, the variables with the highest correlation related to the target traffic flow are selected by using a greedy search algorithm to construct the traffic state vector. The K-Nearest Neighbor (KNN) model is adapted for the application of the proposed state vector. Experimental results on real-world traffic data show that the proposed method of constructing traffic state vector provides good prediction accuracy in short-term traffic prediction.  相似文献   

3.
Big data from floating cars supply a frequent, ubiquitous sampling of traffic conditions on the road network and provide great opportunities for enhanced short-term traffic predictions based on real-time information on the whole network. Two network-based machine learning models, a Bayesian network and a neural network, are formulated with a double star framework that reflects time and space correlation among traffic variables and because of its modular structure is suitable for an automatic implementation on large road networks. Among different mono-dimensional time-series models, a seasonal autoregressive moving average model (SARMA) is selected for comparison. The time-series model is also used in a hybrid modeling framework to provide the Bayesian network with an a priori estimation of the predicted speed, which is then corrected exploiting the information collected on other links. A large floating car data set on a sub-area of the road network of Rome is used for validation. To account for the variable accuracy of the speed estimated from floating car data, a new error indicator is introduced that relates accuracy of prediction to accuracy of measure. Validation results highlighted that the spatial architecture of the Bayesian network is advantageous in standard conditions, where a priori knowledge is more significant, while mono-dimensional time series revealed to be more valuable in the few cases of non-recurrent congestion conditions observed in the data set. The results obtained suggested introducing a supervisor framework that selects the most suitable prediction depending on the detected traffic regimes.  相似文献   

4.
Short‐term traffic flow prediction in urban area remains a difficult yet important problem in intelligent transportation systems. Current spatio‐temporal‐based urban traffic flow prediction techniques trend aims to discover the relationship between adjacent upstream and downstream road segments using specific models, while in this paper, we advocate to exploit the spatial and temporal information from all available road segments in a partial road network. However, the available traffic states can be high dimensional for high‐density road networks. Therefore, we propose a spatio‐temporal variable selection‐based support vector regression (VS‐SVR) model fed with the high‐dimensional traffic data collected from all available road segments. Our prediction model can be presented as a two‐stage framework. In the first stage, we employ the multivariate adaptive regression splines model to select a set of predictors most related to the target one from the high‐dimensional spatio‐temporal variables, and different weights are assigned to the selected predictors. In the second stage, the kernel learning method, support vector regression, is trained on the weighted variables. The experimental results on the real‐world traffic volume collected from a sub‐area of Shanghai, China, demonstrate that the proposed spatio‐temporal VS‐SVR model outperforms the state‐of‐the‐art. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
This study applied the genetic programming (GP) model to identify traffic conditions prone to injury and property‐damage‐only (PDO) crashes in different traffic states on freeways. It was found that the traffic conditions prone to injury and PDO crashes can be classified into a high‐speed and a low‐speed traffic state. The random forest (RF) analyses were conducted to identify the contributing factors to injury and PDO crashes in these two traffic states. Four separate GP models were then developed to link the risks of injury and PDO crashes in two traffic states to the variables selected by the RF. An overall GP model was also developed for the combined dataset. It was found that the separate GP models that considered different traffic states and crash severity provided better predictive performance than the overall model, and the traffic flow variables that affected injury and PDO crashes were quite different across different traffic states. The proposed GP models were also compared with the traditional logistic regression models. The results suggested that the GP models outperformed the logistic regression models in terms of the prediction accuracy. More specifically, the GP models increased the prediction accuracy of injury crashes by 10.7% and 8.0% in the low‐speed and high‐speed traffic states. For PDO crashes, the GP models increased the prediction accuracy by 7.4% and 6.0% in the low‐speed and high‐speed traffic states. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Neural networks have been extensively applied to short-term traffic prediction in the past years. This study proposes a novel architecture of neural networks, Long Short-Term Neural Network (LSTM NN), to capture nonlinear traffic dynamic in an effective manner. The LSTM NN can overcome the issue of back-propagated error decay through memory blocks, and thus exhibits the superior capability for time series prediction with long temporal dependency. In addition, the LSTM NN can automatically determine the optimal time lags. To validate the effectiveness of LSTM NN, travel speed data from traffic microwave detectors in Beijing are used for model training and testing. A comparison with different topologies of dynamic neural networks as well as other prevailing parametric and nonparametric algorithms suggests that LSTM NN can achieve the best prediction performance in terms of both accuracy and stability.  相似文献   

7.
The accuracy of travel time information given to passengers plays a key role in the success of any Advanced Public Transportation Systems (APTS) application. In order to improve the accuracy of such applications, one should carefully develop a prediction method. A majority of the available prediction methods considered the variation in travel time either spatially or temporally. The present study developed a prediction method that considers both temporal and spatial variations in travel time. The conservation of vehicles equation in terms of flow and density was first re-written in terms of speed in the form of a partial differential equation using traffic stream models. Then, the developed speed based equation was discretized using the Godunov scheme and used in the prediction scheme that was based on the Kalman filter. From the results, it was found that the proposed method was able to perform better than historical average, regression, and ANN methods and the methods that considered either temporal or spatial variations alone. Finally, a formulation was developed to check the effect of side roads on prediction accuracy and it was found that the additional requirement in terms of location based data did not result in an appreciable change in the prediction accuracy. This clearly demonstrated that the proposed approach based on using vehicle tracking data is good enough for the considered application of bus travel time prediction.  相似文献   

8.
Driving behavior is generally considered to be one of the most important factors in crash occurrence. This paper aims to evaluate the benefits of utilizing context-relevant information in the driving behavior assessment process (i.e. contextual driving behavior assessment approach). We use a Bayesian Network (BN) model that investigates the relationships between GPS driving observations, individual driving behavior, individual driving risks, and individual crash frequency. In contrast to prior studies without context information (i.e. non-contextual approach), the data used in the BN approach is a combination of contextual features in the surrounding environment that may contribute to crash risk, such as road conditions surrounding the vehicle of interest and dynamic traffic flow information, as well as the non-contextual data such as instantaneous driving speed and the acceleration/deceleration of a vehicle. An information-aggregation mechanism is developed to aggregates massive amounts of vehicle GPS data points, kinematic events and context information into drivel-level data. With the proposed model, driving behavior risks for drivers is assessed and the relationship between contextual driving behavior and crash occurrence is established. The analysis results in the case study section show that the contextual model has significantly better performance than the non-contextual model, and that drivers who drive at a speed faster than others or much slower than the speed limit at the ramp, and with more rapid acceleration or deceleration on freeways are more likely to be involved in crash events. In addition, younger drivers, and female drivers with higher VMT are found to have higher crash risk.  相似文献   

9.
Vehicle-to-vehicle (V2V) communications under the connected vehicle context have the potential to provide new paradigms to enhance the safety, mobility and environmental sustainability of surface transportation. Understanding the information propagation characteristics in space and time is a key enabler for V2V-based traffic systems. Most existing analytical models assume instantaneous propagation of information flow through multi-hop communications. Such an assumption ignores the spatiotemporal relationships between the traffic flow dynamics and V2V communication constraints. This study proposes a macroscopic two-layer model to characterize the information flow propagation wave (IFPW). The traffic flow propagation is formulated in the lower layer as a system of partial differential equations based on the Lighthill-Whitham-Richards model. Due to their conceptual similarities, the upper layer adapts and modifies a spatial Susceptible-Infected epidemic model to describe information dissemination between V2V-equipped vehicles using integro-differential equations. A closed-form solution is derived for the IFPW speed under homogeneous conditions. The IFPW speed is numerically determined for heterogeneous conditions. Numerical experiments illustrate the impact of traffic density and market penetration of V2V-equipped vehicles on the IFPW speed. The proposed model can capture the spatiotemporal relationships between the traffic and V2V communication layers, and aid in the design of novel information propagation strategies to manage traffic conditions under V2V-based traffic systems.  相似文献   

10.
In the field of traffic flow, speed, density, time, and distance are fundamental variables analyzed to predict traffic conditions. Reliable sources of information are gauged using tested mathematical approaches that have been developed. However, a fundamental diagram that could serve as a basis for expression techniques has not been devised. Red–green–blue (RGB) color modeling was used to overcome this limitation in traffic flow. The purpose of this study is to provide a way to understand traffic flow conditions based on features of three traffic flow elements simultaneously. The limitation of three‐dimensional expressions in two‐dimensional paper was extended to multi‐dimensional information. Information on speed, density, and flow were combined into a single RGB color and given the name RGB flow‐density space time‐distance space. This cancels out the effect of each individual's vehicular trajectories and contains five major components of a specific road section. The new gizmo aims to provide information on traffic flow conditions in transition and to stimulate further approaches related to the predictions and understanding of traffic flow. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
12.
We develop theoretical and computational tools which can appraise traffic flow models and optimize their performance against current time-series traffic data and prevailing conditions. The proposed methodology perturbs the parameter space and undertakes path-wise analysis of the resulting time series. Most importantly the approach is valid even under non-equilibrium conditions and is based on procuring path-space (time-series) information. More generally we propose a mathematical methodology which quantifies traffic information loss.In particular the method undertakes sensitivity analysis on available traffic data and optimizes the traffic flow model based on two information theoretic tools which we develop. One of them, the relative entropy rate, can adjust and optimize model parameter values in order to reduce the information loss. More precisely, we use the relative entropy rate as an information metric between time-series data and parameterized stochastic dynamics describing a microscopic traffic model. On the other hand, the path-space Fisher Information Matrix, (pFIM) reduces model complexity and can even be used to control fidelity. This is achieved by eliminating unimportant model parameters or their combinations. This results in easier regression of parametric models with a smaller number of parameters.The method reconstructs the Markov Chain and emulates the traffic dynamics through Monte Carlo simulations. We use the microscopic interaction model from Sopasakis and Katsoulakis (2006) as a representative traffic flow model to illustrate this parameterization methodology. During the comparisons we use both synthetic and real, rush-hour, traffic data from highway US-101 in Los Angeles, California.  相似文献   

13.
The missing data problem remains as a difficulty in a diverse variety of transportation applications, e.g. traffic flow prediction and traffic pattern recognition. To solve this problem, numerous algorithms had been proposed in the last decade to impute the missed data. However, few existing studies had fully used the traffic flow information of neighboring detecting points to improve imputing performance. In this paper, probabilistic principle component analysis (PPCA) based imputing method, which had been proven to be one of the most effective imputing methods without using temporal or spatial dependence, is extended to utilize the information of multiple points. We systematically examine the potential benefits of multi-point data fusion and study the possible influence of measurement time lags. Tests indicate that the hidden temporal–spatial dependence is nonlinear and could be better retrieved by kernel probabilistic principle component analysis (KPPCA) based method rather than PPCA method. Comparison proves that imputing errors can be notably reduced, if temporal–spatial dependence has been appropriately considered.  相似文献   

14.
With the availability of large volumes of real-time traffic flow data along with traffic accident information, there is a renewed interest in the development of models for the real-time prediction of traffic accident risk. One challenge, however, is that the available data are usually complex, noisy, and even misleading. This raises the question of how to select the most important explanatory variables to achieve an acceptable level of accuracy for real-time traffic accident risk prediction. To address this, the present paper proposes a novel Frequent Pattern tree (FP tree) based variable selection method. The method works by first identifying all the frequent patterns in the traffic accident dataset. Next, for each frequent pattern, we introduce a new metric, herein referred to as the Relative Object Purity Ratio (ROPR). The ROPR is then used to calculate the importance score of each explanatory variable which in turn can be used for ranking and selecting the variables that contribute most to explaining the accident patterns. To demonstrate the advantages of the proposed variable selection method, the study develops two traffic accident risk prediction models, based on accident data collected on interstate highway I-64 in Virginia, namely a k-nearest neighbor model and a Bayesian network. Prior to model development, two variable selection methods are utilized: (1) the FP tree based method proposed in this paper; and (2) the random forest method, a widely used variable selection method, which is used as the base case for comparison. The results show that the FP tree based accident risk prediction models perform better than the random forest based models, regardless of the type of prediction models (i.e. k-nearest neighbor or Bayesian network), the settings of their parameters, and the types of datasets used for model training and testing. The best model found is a FP tree based Bayesian network model that can predict 61.11% of accidents while having a false alarm rate of 38.16%. These results compare very favorably with other accident prediction models reported in the literature.  相似文献   

15.
Short‐term traffic flow prediction is fundamental for the intelligent transportation system and is proved to be a challenge. This paper proposed a hybrid strategy that is general and can make use of a large number of underlying machine learning or time‐series prediction models to capture the complex patterns beneath the traffic flow. With the strategy, four different combinations were implemented. To consider the spatial features of traffic phenomenon, several different state vectors including different observations were built. The performance of the proposed strategy was investigated using the traffic flow measurements from the Traffic Operation and Safety Laboratory in Wisconsin, USA. The results show the overall performance of hybrid strategy is better than a single model. Also, incorporating observations from adjacent junctions can improve prediction accuracy. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract

Short-term traffic prediction plays an important role in intelligent transport systems. This paper presents a novel two-stage prediction structure using the technique of Singular Spectrum Analysis (SSA) as a data smoothing stage to improve the prediction accuracy. Moreover, a novel prediction method named Grey System Model (GM) is introduced to reduce the dependency on method training and parameter optimisation. To demonstrate the effects of these improvements, this paper compares the prediction accuracies of SSA and non-SSA model structures using both a GM and a more conventional Seasonal Auto-Regressive Integrated Moving Average (SARIMA) prediction model. These methods were calibrated and evaluated using traffic flow data from a corridor in Central London under both normal and incident traffic conditions. The prediction accuracy comparisons show that the SSA method as a data smoothing step before the application of machine learning or statistical prediction methods can improve the final traffic prediction accuracy. In addition, the results indicate that the relatively novel GM method outperforms SARIMA under both normal and incident traffic conditions on urban roads.  相似文献   

17.
Deep neural networks (DNNs) have recently demonstrated the capability to predict traffic flow with big data. While existing DNN models can provide better performance than shallow models, it is still an open issue of making full use of spatial-temporal characteristics of the traffic flow to improve their performance. In addition, our understanding of them on traffic data remains limited. This paper proposes a DNN based traffic flow prediction model (DNN-BTF) to improve the prediction accuracy. The DNN-BTF model makes full use of weekly/daily periodicity and spatial-temporal characteristics of traffic flow. Inspired by recent work in machine learning, an attention based model was introduced that automatically learns to determine the importance of past traffic flow. The convolutional neural network was also used to mine the spatial features and the recurrent neural network to mine the temporal features of traffic flow. We also showed through visualization how DNN-BTF model understands traffic flow data and presents a challenge to conventional thinking about neural networks in the transportation field that neural networks is purely a “black-box” model. Data from open-access database PeMS was used to validate the proposed DNN-BTF model on a long-term horizon prediction task. Experimental results demonstrated that our method outperforms the state-of-the-art approaches.  相似文献   

18.
The travel decisions made by road users are more affected by the traffic conditions when they travel than the current conditions. Thus, accurate prediction of traffic parameters for giving reliable information about the future state of traffic conditions is very important. Mainly, this is an essential component of many advanced traveller information systems coming under the intelligent transportation systems umbrella. In India, the automated traffic data collection is in the beginning stage, with many of the cities still struggling with database generation and processing, and hence, a less‐data‐demanding approach will be attractive for such applications, if it is not going to reduce the prediction accuracy to a great extent. The present study explores this area and tries to answer this question using automated data collected from field. A data‐driven technique, namely, artificial neural networks (ANN), which is shown to be a good tool for prediction problems, is taken as an example for data‐driven approach. Grey model, GM(1,1), which is also reported as a good prediction tool, is selected as the less‐data‐demanding approach. Volume, classified volume, average speed and classified speed at a particular location were selected for the prediction. The results showed comparable performance by both the methods. However, ANN required around seven times data compared with GM for comparable performance. Thus, considering the comparatively lesser input requirement of GM, it can be considered over ANN in situations where the historic database is limited. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
In traffic flow with naturalistic driving only, stimulus information pre-dominantly comes from the preceding vehicles with drivers occasionally responding to the following vehicles through the inspection of rear-view mirrors. Such one-sided information propagation may potentially be altered in future connected vehicle environment. This brings new motivations of modeling vehicle dynamics under bi-directional information propagation. In this study, stemming from microscopic bi-directional car-following models, a continuum traffic flow model is put forward that incorporates the bi-directional information impact macroscopically but can still preserve the anisotropic characteristics of traffic flow and avoid non-physical phenomenon such as wrong-way travels. We then analyze the properties of the continuum model and respectively illustrate the condition that guarantees the anisotropy, eradicates the negative travel speed, preserves the traveling waves and keeps the linear stability. Through a series of numerical experiments, it is concluded that (1) under the bi-directional looking context only when the backward weight ratio belongs to an appropriate range then the anisotropic property can be maintained; (2) forward-propagating traffic density waves and standing waves emerge with the increasing consideration ratio for backward information; (3) the more aggressive driving behaviors for the forward direction can delay the backward-propagating and speed up the forward-propagating of traffic density waves; (4) positive holding effect and negative pushing effect of backward looking can also be observed under different backward weight ratios; and (5) traffic flow stability varies with different proportion of backward traffic information contribution and such stability impact is sensitive to the initial traffic density condition. This proposed continuum model may contribute to future development of traffic control and coordination in future connected vehicle environment.  相似文献   

20.
In this paper, a novel freeway traffic speed estimation method based on probe data is presented. In contrast to other traffic speed estimators, it only requires velocity data from probes and does not depend on any additional data inputs such as density or flow information. In the first step the method determines the three traffic phases free flow, synchronized flow, and Wide Moving Jam (WMJ) described by Kerner et al. in space and time. Subsequently, reported data is processed with respect to the prevailing traffic phase in order to estimate traffic velocities. This two-step approach allows incorporating empirical features of phase fronts into the estimation procedure. For instance, downstream fronts of WMJs always propagate upstream with approximately constant velocity, and downstream fronts of synchronized flow phases usually stick to bottlenecks. The second step assures the validity of measured velocities is limited to the extent of its assigned phase. Effectively, velocity information in space-time can be estimated more distinctively and the result is therefore more accurate even if the input data density is low.The accuracy of the proposed Phase-Based Smoothing Method (PSM) is evaluated using real floating car data collected during two traffic congestions on the German freeway A99 and compared to the performance of the Generalized Adaptive Smoothing Method (GASM) as well as a naive algorithm. The quantitative and qualitative results show that the PSM reconstructs the congestion pattern more accurately than the other two. A subsequent analysis of the computational efficiency and sensitivity demonstrates its practical suitability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号