首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
基于沥青的固有与改善性能,在代表沥青性能的三大指标基础上,研究了SBS改性沥青在SBS改性剂在2%、4%、6%、8%掺量下沥青三大指标及密度、动态剪切模量、动力粘度、表观粘度、弹性恢复试验的变化情况,分析了不同产量下SBS改性沥青较原有90#基质沥青性能的变化,根据改善性能的变化由此来确定SBS改性沥青在SBS改性剂的最佳掺量。研究表明:SBS改性沥青的流变性能和抗变形性均优于基质沥青,等同于经SBS改性剂改性后的沥青所获得的改善性能优于沥青固有性能的结论。同时也对比出在SBS改性剂产量为4%时,SBS改性剂所得到的综合改善性能最优。  相似文献   

2.
通过室内试验,测定了辽河90#基质沥青经不同掺量SBR改性后基本技术指标的变化情况,以此研究SBR改性沥青的路用性能和SBR改性剂的最佳掺量.试验结果表明基质沥青经SBR改性后低温性能得到大幅度改善,高温性能也得到一定改善,但效果不是很明显;综合各方面因素,SBR改性剂的最佳掺量确定为4%.  相似文献   

3.
天然岩沥青改性沥青性能及改性机理试验研究   总被引:3,自引:0,他引:3  
以新疆天然岩沥青作为改性剂,通过沥青性能试验和沥青4组分试验,研究天然岩沥青改性沥青中天然岩沥青的最佳掺量,探讨天然岩沥青作为改性剂的改性机理。试验结果表明,随着天然岩沥青掺量的增加,改性沥青的PI值、软化点和当量软化点不断升高,当量脆点T1.2(绝对值)和10℃延度呈递减趋势,RTFOT后改性沥青的质量损失不断减小、软化点和针入度比不断增加,表明天然岩沥青的改性沥青的感温性和高温性能得到明显改善、低温性能改善效果不佳、抗老化性能得到提高。由此,综合确定改性效果俱佳且满足各项性能指标要求的天然岩沥青经济掺量为5%。随天然岩沥青的掺入,使原有的石油沥青组分发生变化,而这种变化正是基质沥青性能得以改善的本质所在。  相似文献   

4.
对西北地区常用伊朗基质AH-110号沥青用SBS4303、1401、1301改性剂进行了室内改性试验,结果显示,影响SBS改性沥青性能的特别是低温性能的主要因素为基质沥青的性质、组分的比例,其次为改性剂的型号和剂量,得出SBS5%及其以上剂量时,才可达到本地区改性沥青的技术要求。  相似文献   

5.
布顿岩沥青改性沥青混合料路用性能研究   总被引:1,自引:1,他引:0  
以所选用的天然布顿岩沥青作为改性剂,以70号道路石油沥青作为基质沥青,通过湿法改性设备磨细制备布敦岩沥青改性沥青;以制备完成的改性沥青及其基质沥青作为胶结料进行沥青混合料的性能评价与比较。认为通过添加20%布敦岩沥青粉末能够明显提高基质沥青的硬度;当以20%布敦岩沥青掺量的改性沥青作为胶结料时,其沥青混合料的高温性能、水稳定性能及低温性能均能满足公路沥青路面施工技术规范的要求。  相似文献   

6.
SBS改性剂对沥青混合料性能的提升已毋庸置疑,但是不同类型的SBS对沥青混合料的性能影响水平不相同,采用不同型号的SBS改性剂和不同的掺量,对SK-90基质沥青进行改性,先后经过试验室内短期老化和长期老化,对各阶段的混合料试件分别进行动稳定度试验和低温弯曲试验。验证了线型SBS和星型SBS改性剂沥青混合料老化后的高温性能相近,而在老化后的低温性能方面,星型SBS改性沥青混合料是优于线型SBS改性沥青混合料的。  相似文献   

7.
采用扫描电镜观察了常用的沥青改性剂SBS和SBR在基质沥青中的分散状态,同时比较了这两种改性沥青的差热扫描图谱.通过对比改性沥青的微观形貌,并结合热稳定性分析,深入探讨了常用沥青改性剂SBS和SBR对沥青的改性机理.  相似文献   

8.
本文通过对基质沥青、SBS改性沥青以及高黏度改性沥青在6种温度下(190、200、210、220、230、240℃)进行的老化试验,分别得到六个不同的时间点(10、20、30、40、50、60 min)所测量的3种沥青软化点和针入度两大性能指标。试验结果表明,基质沥青在190~200℃短期(0~45 min)性能基本变化很小,基本不发生老化,可以直接使用。在210~220℃沥青性能变化处于"过渡"阶段;230~240℃沥青老化随时间变化趋于一致,老化程度较高;使用SBS改性剂和高黏改性剂对沥青进行改性,沥青的抗老化性能得到提升,相比基质沥青在6种温度下的老化程度降低了很多,有效解决了沥青在超热条件下的老化问题。  相似文献   

9.
传统的SBS改性沥青属物理共混改性,普遍存在着改性剂与基质沥青相容性差、热稳定性不足的问题。而PPA对沥青的改性属于化学改性,可有效弥补传统SBS改性沥青的不足,提高其路用性能。通过对不同掺量的SBS(3%、4%)与不同掺量的PPA(0.5%、1.0%、1.5%和2.0%)的复合改性沥青的针入度、软化点、5℃延度、旋转粘度、RTFOT、PAV老化后的技术指标以及PG分级等技术指标进行试验分析,并横向比较SBS+PPA与SBS改性沥青的性能变化关系,分析评价PPA加入沥青中的改性效果。结果表明:PPA加入到沥青中,可有效提高沥青的高温性能、耐老化性能,改善改性沥青的热存储稳定性。通过复配改性的沥青相容性好,且能有效提高其低温抗裂性,用部分PPA替代一部分SBS改性剂可达到成品改性沥青的路用性能,且降低了改性沥青的成本。  相似文献   

10.
分析了改性沥青形成的原因、途径,并通过对两种改性沥青的微观结构分析和性能比较,证实了改性过程是一个复杂的物理化学过程,认为保证改性效果的首要条件是改性剂与基质沥青之间具有良好的相容性。为取得良好的改性效果,聚合物改性应充分保证以物理改性为主,以化学改性为辅。  相似文献   

11.
复合使用SBS和SBR改性剂,制成FH改性沥青,并对比FH改性沥青、SBS改性沥青和SBR改性沥青的低温抗裂性能,结果表明:FH改性沥青的低温抗裂性能比SBS改性沥青高,介于SBS和SBR改性沥青之间,且高温性能高于SBR改性沥青,满足要求。  相似文献   

12.
温拌布敦岩沥青混合料路用性能研究   总被引:1,自引:0,他引:1  
复合改性沥青混合料是采用布敦岩沥青(BMA)及温拌剂复合改性而成的一种沥青混合料,将它与常规BMA及常规温拌沥青性能进行比较,得出该复合改性沥青混合料可以大大降低拌和温度、节约能源、保护环境,还可保证良好的路用性能.以布敦岩沥青作为改性剂能明显提高沥青混合料的高温稳定性,但对低温性能影响很小.  相似文献   

13.
新疆乌尔禾岩沥青对克90沥青的改性试验研究   总被引:1,自引:0,他引:1  
不同的基质沥青在选用崭沥青作为改性剂的时候,由于其组分不问。试验参数也不相同。以新疆鸟尔禾岩沥青为改性剂,克托玛依90号沥青为基质沥青,通过改性试验研究,测定改性沥青的三大指标及粘度,确定乌尔禾岩沥青仵克拉玛依90号沥青中的最佳掺量、最佳搅拌时间及最佳溶人温度。研究表明,不同的试验参数对岩沥青的改性效果有重要影响,选用合理的试验参数对岩沥青的改性效果有重要意义,为岩沥青在道路改性方面的推广使用提供一定的理论依据。  相似文献   

14.
借助微观试验对以费托蜡为主要原料的自主研发微晶蜡类温拌沥青改性剂性能进行评价,通过气相色谱、差热分析、红外光谱等微观试验表明,自研发温拌改性剂分子结构、化学组成和纯度较好;温拌改性沥青的基本性能试验与SHRP性能试验表明,相较于基质沥青,温拌沥青高温粘度降低,软化点显著提高,并使基质沥青提高了一个高温PG等级,说明自主研发的温拌改性剂具有较好的降粘与提高高温性能的功能。  相似文献   

15.
针对不同基质沥青、不同改性剂制备而成的SBS改性沥青,通过对其路用性能试验对比分析,综合评述SBS改性沥青混合料技术性能及其应用效果.  相似文献   

16.
用于沥青改性的纳米材料综合比选   总被引:1,自引:0,他引:1  
本文首先通过一定的选择原则在尽可能大的范围内初步确定用于改性沥青的纳米材料种类,然后通过内掺法及内掺后超声波分散两种手段制备纳米改性沥青,并通过比较不同种类纳米改性沥青的针入度、软化点、延度三大指标及布氏粘度指标,最终确定A为基质沥青最理想的纳米材料改性荆。采用硅烷偶联剂KH550、聚乙烯亚胺PEI和表面活性剂硬脂酸三种分散剂对A进行表面改性,并制备相应的改性沥青。通过改性沥青的三大指标及粘度指标,对三种分散剂的表面改性效果进行比较,并最终确定相对纳米材料2%剂量的硅烷偶联剂KH550为A最佳分散剂。  相似文献   

17.
通过室内试验,研究了不同SBS改性剂掺量下,改性沥青技术性质及相应混合料性能变化规律。试验结果表明:SBS改性剂的添加,能有效改善基质沥青材料的高、低温性能,且随着改性剂掺量的变化,混合料性能呈现不同的变化规律。考虑到对路面整体路用性能的影响,确定了SBS改性剂的最佳掺量。  相似文献   

18.
通过对SBR改性沥青技术在公路中不断的实践研究,SBR改性沥青已能满足我国北方公路施工建设规范要求,SBR改性剂能使沥青的延度指标有效的提高,可提高沥青混合料的低温抗裂性能,在防止沥青混凝土路面低温开裂及抗水损坏方面效果十分突出。  相似文献   

19.
文章对7种不同胶结料的沥青混合料的模量、高温性能和低温性能进行试验研究,探讨了不同胶结料对混合料性能的影响。结果表明:采用适当的胶结料改性措施、添加改性剂和采用橡胶沥青等能获得较高的混合料模量,改善其高温性能;除硬质沥青和无添加SBS改性沥青外,其余5种混合料的低温抗裂性也满足要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号