首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
文中结合实际案例,介绍了uDL2电位法、地电位法、绝缘接头测试仪法、PCM漏电率法和电流环法在绝缘接头绝缘性能评价中的应用。结果表明:综合应用5种测试方法,可实现对绝缘接头绝缘性能的定量评价。电流环测试法可直观检测出绝缘接头两侧的管中电流大小及方向,测试结果可靠性最高。  相似文献   

2.
由于在评价管道绝缘接头的绝缘性能时易出现误判,研究了电位法、射频绝缘性能测试法以及PCM漏电率法的原理及测试步骤,重点介绍了电流环在测试评价绝缘接头绝缘性能中的应用情况。并开展了4种方法在某输气管道阀室绝缘接头上的适用性研究。结果表明:4种测试方法均可以测试绝缘接头的绝缘性能。电流环法可以精确地测量出绝缘接头两侧管中电流的大小和方向,准确判断绝缘接头的绝缘性能,测试结果可靠性高。  相似文献   

3.
检查片是评价埋地管道阴极保护有效性的传统工具。近年有新的发展,如:2004年ANSI和NACE颁布改进的阴极保护检查片实施标准,增加检查片和管道间电偶电流、试片断电电位等现场测试,以提高试验的信息量。为此,开发了新的测量仪器,并在上海至银川的西气东输管道2000km沿线检查片埋设现场,进行了新仪器的测试,检测了管道和试片的直流及交流电位、试片断电电位和管道与检查片间电偶电流等大量参数。针对现场发现的电偶电流周期波动现象,经验证是环境交流干扰造成的,并讨论了交流干扰对管地电位和电偶电流的影响规律,为现场测量数据提供分析依据。  相似文献   

4.
随着交直流电气化铁路、高压输电线路的大量兴建,管道不可避免受到临近电气化设施的干扰。排除或者减缓杂散电流的主要途径是选择合适的杂散电流排流设施。国内目前应用的排流设施主要有极性排流器、钳位式排流器以及固态去耦合器。通过对这几种排流设施进行的现场测试与评价,总结出了每种排流方式的优点与局限性,可为今后不同干扰情况下选择合理的排流减缓方式提供依据。同时,结合现场实践,提出了杂散电流减缓的研究方向。  相似文献   

5.
输油气站场管道及接地系统较多,采用电流环或者钳型电流表等电流测量设备,可以精确测量管道或者接地扁钢的电流大小及方向,结合开挖验证,从而查找出站场阴极保护的绝缘故障位置。应用实例表明:采用电流环或钳型电流表等电流测量设备可以查找出站场阴极保护绝缘故障的位置;某输气站场的阴极保护绝缘故障的原因是站场内的干线管道1101截断阀底部的吊耳与接地扁钢搭接,导致电流导通。  相似文献   

6.
随着经济的不断发展,高压输电线路或电气化铁路与管道的平行或交叉越来越多.管道受到的交流干扰越来越严重,文中分别从交流杂散电流干扰的特点,交流杂散电流干扰的检测、评价与减缓等方面,论述了管道交流杂散电流干扰的研究现状,比较了国内交流杂散电流干扰研究与国外的差距,提出了目前交流杂散电流减缓技术的局限性以及下一步的研究方向,可对今后交流杂散电流干扰的研究提供一定的借鉴意义.  相似文献   

7.
杂散电流能够对埋地钢制管道造成很大的危害和破坏,严重影响管道的安全运行.应用智能杂散电流检测仪( SCM)对埋地钢制管道上的杂散电流干扰进行测试,通过对检测结果分析发现,智能杂散电流检测仪功能齐全,能够沿管道路线检测管道上各种杂散干扰电流的大小和方向,排除不需要的干扰信号,确定干扰源类型和来源;能够准确判断管道上杂散电...  相似文献   

8.
大庆油田埋地管道外防腐层检测技术   总被引:3,自引:0,他引:3  
近两年来,大庆油田采用管中电流法开展了对埋地管道防腐层的检测和评价工作,目前对单线防腐管防腐检测准则性达到了70%左右(理想情况下),以科学地指导油田埋地管道大修起到了重要的促进作用。  相似文献   

9.
长输管道的腐蚀绝大部分为外部腐蚀,因此准确检测和评价防腐层的状况是保证管道安全运行的基础。文中介绍了用多频管中电流法(PCM)对管道防腐层破损点进行检测的原理及防腐层安全评价方法,结合PCM对广东某长输天然气管道的现场试验,验证了该方法的准确性和科学性,同时,根据现场经验,给出了PCM在使用过程中的建议与注意事项,并展望了PCM检测技术在应用中存在的不足。  相似文献   

10.
文中利用杂散电流测试仪器,在城市管道受到杂散电流干扰区域进行了杂散电流的详细测试。选取同一条管线的4个点进行了测试,通过测试结果分析杂散电流的大小和方向,判断交流杂散电流对燃气管道直流电位的影响,确定电流流入与流出位置,确定出管线最容易遭受到腐蚀的位置。利用测试结果的分析结论确定施加排流措施方案,并测试排流后的效果。测试结果表明:排流措施施加得当,排流效果良好,能够使阴极保护系统保持正常运行状态。  相似文献   

11.
介绍了国内长输管道的现状,分析了油气管道常用的5种外检测方法:PCM管中电流法、直流电位梯度(DCVG)方法、标准管/地电位检测技术(P/S)、电流梯度检测技术(CGDT)、CIPS密间隔电位法。比较了它们在四川地区应用的优缺点,并对其适用性进行了简要阐述。最后,对油气管道外检测技术发展趋势进行了展望。  相似文献   

12.
以新大线输油管线杂散电流干扰腐蚀问题为研究对象,进行干扰调查,并现场测试管地电位、土壤电位梯度、土壤电阻率和管线的杂散电流等参数.测试结果分析充分说明干扰来源于与新大线管道近距离平行的大连快轨3号线列车的运行,其特点是双向动态干扰,没有固定的阴极区和阳极区.提出采取增加阴极保护装置和极性接地排流方式共同防护来抑制杂散电流干扰,并客观分析排流效果.分析表明排流效果良好.  相似文献   

13.
为了更好了解金属磁记忆检测在管道缺陷识别、尺寸量化和剩余寿命方面的研究现状,展望将来的研究方向,综合分析了基于金属磁记忆的管道缺陷识别的研究方法和存在的问题。根据缺陷尺寸量化的现有文献,归纳出管道缺陷尺寸量化进一步研究的方向。阐述了管道剩余寿命预测的研究和数据收集存在的问题。数学方法、数学模型和计算机技术将成为金属磁记忆研究的有力工具,根据真实环境下的管道相关实验数据建立管道缺陷识别、尺寸量化和管道剩余寿命的自动化分析系统是研究的重要方向。  相似文献   

14.
在线管道缺陷常用检测方法分析   总被引:3,自引:1,他引:2  
为了使在线管道检测过程中更好地采集技术指标中所要求的缺陷信息,根据国内外管道缺陷检测方法的原理、现状、应用范围,分析了漏磁检测、超声波检测、远场涡流检测、射线检测等多种缺陷检测方法的优缺点.对其中3种主要检测方法(漏磁检测法、超声波检测法、涡流检测法)作了对比研究,得出漏磁检测法测量速度快,对管道内的光滑程度要求低,更适合检测被腐蚀的管壁的结论.因此,选用漏磁检测方法作为输油管道内腐蚀缺陷检测的基本方法.  相似文献   

15.
城镇燃气埋地钢质管道杂散电流测试方法   总被引:3,自引:0,他引:3  
目前,对轨道交通动态杂散电流干扰原理的研究开展的很多,但是,如何判断干扰电流对在役埋地燃气管道的危害程度,至今国内外还没有非常有效的手段。因此,比较了几种测试方法的适应性,提出了管地电位波动监测与SCM杂散电流检测仪相结合的检测方法,为埋地燃气钢质管道周围环境的杂散电流干扰测试与评价提供了新的依据。  相似文献   

16.
GPS同步中断法在阴极保护有效性评价中的应用   总被引:1,自引:1,他引:0  
采用GPS同步中断法对港枣线通电/断电电位进行测量,进而根据阴极保护有效准则对港枣线阴极保护有效性进行系统评价。结果表明:干线管道的阴极保护有效保护率达82.5%,调整恒电位仪输出后,干线管道的阴极保护有效保护率可达95.5%。欠保护管段集中在兖州站-滕州17#阀室站间。阴极保护失效可能与管道防腐层出现电流疑似泄漏点及交流杂散电流干扰有关。  相似文献   

17.
开挖检查是挖开管道直接观察和测试管道腐蚀及防护状况的过程,是管道外检测的重要工作之一。目前对管体存在的缺陷点破损程度的判断,主要由现场工作人员根据经验,由管道防腐层的缺陷点尺寸来判断破损程度。但是影响缺陷点破损程度的还有管体的阴极保护、杂散电流、管体表面腐蚀等情况。为了综合评价各种因素对缺陷点破损程度的影响,通过分析2007年、2008年西气东输东段3个标段的开挖数据,考虑管体的腐蚀情况、土壤腐蚀性、是否漏出管体、杂散电流干扰情况、缺陷点在管体上所处位置、管段类型(直管、弯头等)等6个方面对缺陷点破损程度的影响,提出一种新的判断管体缺陷破损程度准则。  相似文献   

18.
埋地热油管道预热过程是一个不稳定传热过程,埋地热油管道启输过程的土壤温度场是一个沿管道横断面(径向和切向)与轴向的三维非稳态传热问题。通过分析埋地热油管道的几何特性,考虑了沿轴向预热介质温降对土壤温度变化的影响,对埋地热油管线正常运行和正向预热过程时的数学模型进行了适当的简化和处理,并且对正向预热时土壤蓄热量进行了计算,还利用数值计算的方法进行了求解,得到了油温在轴向和径向上的变化规律,在求解数学模型时,对某一断面处的土壤部分的温度场应用有限差分法求解。  相似文献   

19.
埋地钢质管道与高压交流输电线路平行时,由于电磁感应作用,管道上会产生交流感应电压。交流电压的大小与许多因素有关,筛选出关键因素对于管道设计中的交流电压估算有重要意义。文中简要推导了管道上交流感应电压的计算公式,采用CDEGS软件建立了输电线路与管道平行的模型,并选取典型的计算参数。通过软件计算,分析了不同管道参数及输电线路参数对最大交流感应电压的影响。计算结果表明防腐层类型、负载电流、平行长度及平行间距对最大交流感应电压影响较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号