首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
柴强 《铁道建筑》2020,(3):118-122
聚氨酯固化道床浇注过程中材料产生聚合反应导致体积膨胀。为确保高速铁路轨道的平顺性,须严格控制浇注施工中轨道的变形。针对济青(济南-青岛)高速铁路的实际线路情况,对比分析直线段、缓和曲线段、圆曲线段聚氨酯固化道床的施工变形,并采取相应的控制措施。曲线超高段聚氨酯固化道床施工时应调整保压配重和内轨侧与外轨侧的浇注流量,减小浇注时间差。现场监测结果表明,该控制措施达到了预期效果。  相似文献   

2.
聚氨酯固化道床是一种新型的轨道结构,兼备有砟轨道和无砟轨道的优点,可在有特定需要的区段铺设。沪昆高铁北盘江特大桥主桥为跨度445 m的上承式钢筋混凝土拱桥,设计的聚氨酯固化道床轨道结构受温度和徐变作用影响比较小,有利于线路的稳定且维修方便。本文介绍了碎石道床填筑和聚氨酯固化道床浇注施工质量控制技术,并对线路质量进行了动态测试。测试结果表明,北盘江特大桥聚氨酯固化道床能够满足列车运行安全性和稳定性要求,同时也适应高速铁路大跨度桥梁变形的要求,轨道平顺性良好,质量控制措施效果显著。  相似文献   

3.
为解决宽枕板式聚氨酯固化道床在浇注施工过程中出现的不同程度的轨道结构上拱现象,通过室内实尺模型试验,确定聚氨酯浇注发泡后道床的膨胀力、宽枕板上拱变形量以及合理的浇注方式。试验结果表明:对宽枕板式道床进行全断面聚氨酯浇注后,单块宽枕板受到的膨胀力约为40 k N;先浇注宽枕板板缝间的点位,宽枕板已经和混凝土板黏结形成约束力,有助于减轻完整浇注后轨道上拱的情况;双梯形聚氨酯固化道床施工时宽枕板的上拱变形明显减小;施工时分批次浇注会减少宽枕板的上拱变形量。  相似文献   

4.
针对道岔区等轨道结构形式较复杂地段无法进行聚氨酯固化道床浇注等问题,专门设计了一种施工设备。该设备主要由浇注系统和走行系统组成。浇注系统的2个可移动浇注枪头可同时工作,适应道岔区复杂的浇注环境,并且解决了浇注时因聚氨酯材料发生反应而产生的膨胀力不对称问题。自带动力的走行系统中配备了能够实时监测压力的道床保压装置,对浇注施工中的道床施加向下压力,控制轨道变形量。轴箱外置于轮对两端,车架与轴箱采用弹性悬挂方式连接,保证整车在小半径曲线段和道岔区的通过能力。与现有设备相比,道岔区聚氨酯浇注设备具有操作方便、小型化、高效率、自走行、自带保压等功能,提高了浇注效率,保障了施工质量。  相似文献   

5.
针对长直正线区段进行聚氨酯固化道床施工中浇注效率低等问题,设计了一种高效聚氨酯浇注施工设备.该浇注设备的6个可移动浇注枪头同时工作,可一次完成一个枕木单侧的浇注工作,同时也解决了浇注时因聚氨酯材料发生反应而产生的膨胀力不对称问题.可自动伸缩的走行系统配备有能够实时监测压力的道床保压装置,对浇注施工中的道床施加向下压力,...  相似文献   

6.
聚氨酯固化道床是介于传统碎石道床和无砟轨道整体道床之间的一种新型结构。本文介绍了聚氨酯固化道床的国内外现状;通过聚氨酯固化道床围压试件的疲劳荷载、冻融试验、实尺模型疲劳试验和现场加载车测试试验,研究聚氨酯固化道床的弹性、抗累积变形、荷载传递规律及轨排阻力等力学性能。试验结果表明:聚氨酯固化道床具有良好弹性保持能力和抗累积变形能力,和普通碎石道床相比,具有更好的抵抗横向荷载能力,同时验证了聚氨酯固化道床结构设计断面的合理性。  相似文献   

7.
聚氨酯固化道床是继有砟轨道和无砟轨道以后的又一新型道床结构,不仅有足够的强度和稳定性,而且具备弹性好、可维修性好等优点。本文根据山西中南部铁路通道重载铁路综合试验段,对聚氨酯固化道床现场的实际施工过程进行了分析,总结出一套完整的聚氨酯固化道床浇注前轨道施工方法,并对施工过程中各环节质量卡控点,有针对性地提出了相应控制措施。  相似文献   

8.
道砟颗粒表面清洁度分别取0.17%、0.50%、0.70%、1.00%,通过室内实尺模型疲劳试验,分析500万次疲劳荷载作用下聚氨酯固化道床沉降、道床静态模量的变化规律以及轨枕与道床的黏结性能。结果表明,当道砟清洁度超过0.50%后,聚氨酯固化道床沉降明显增大,道床静态模量无明显变化,轨枕与道床黏结性能变差。建议聚氨酯固化道床施工时,在道砟装载、运输过程中采取措施防止道砟二次污染,上砟整道时采取少捣多稳工艺,确保固化道床浇注前道砟清洁度在0.50%以内。  相似文献   

9.
在分析桥梁变形与轨道变形的映射关系基础上,从轨道平顺性与车体振动加速度的相关关系出发,确定高速铁路轨道长波不平顺采用60 m中点弦测值评价且有效管理截止波长为200 m,通过实测数据的统计分析建立轨道不平顺60 m中点弦测值与车体振动加速度的关系式,据此提出在荷载组合作用下高速铁路大跨度桥梁上车体振动加速度简化分析方法。分析荷载组合下大跨度桥梁变形引起的车体振动加速度时,对于设计阶段,将荷载组合下的桥梁理论变形曲线经200 m高通滤波后计算60 m中点弦测值;对于建成阶段,将桥上实测轨道不平顺消除轨道自身随机不平顺后的轨道线形作为桥梁变形曲线,再经200 m高通滤波后计算60 m中点弦测值,并代入其与车体振动加速度的关系式,得到桥梁变形引起的车体振动加速度。以某长江大桥为例对该方法进行验证。结果表明:采用该方法和车辆-轨道耦合分析方法得到的大跨度桥梁变形引起的车体振动加速度分别为0.39和0.35 m·s-2,基本一致,验证了该方法在大跨度桥梁上的适用性,以及对大跨度桥梁长波不平顺进行200 m高通滤波的必要性与合理性。  相似文献   

10.
以济青(济南—青岛)高速铁路为依托,针对曲线超高段聚氨酯固化道床的工程应用,总结其施工工艺。结果表明:曲线超高段聚氨酯固化道床施工工艺与正线基本一致;聚氨酯材料起发时间应控制在14~15 s;曲线超高段聚氨酯固化施工后,轨面高程普遍呈下降趋势,其变形值一般小于2 mm,但内轨侧变形一般大于外轨侧,差值约1 mm。研究结果可为今后类似工程提供参考。  相似文献   

11.
针对高速铁路简支梁桥上有砟轨道梁端周期不平顺的形成机理及演变规律开展研究,重点分析环境温度对轨道周期不平顺的影响规律,并提出一种能快速检测有砟轨道枕下道床支承状态的方法 (BDS法)。结果表明:环境温度荷载引起的梁端道砟滑移流变会导致梁端道床支承刚度不足,引起轨枕局部空吊,导致梁端轨道高低周期不平顺,且环境温度变化量越大,梁端轨道高低不平顺变化量越大;32 m简支梁有砟轨道梁端周期不平顺会引起脱轨系数最大值增加25.4%,平均值增大11.9%,轮重减载率最大值增大178.68%,平均值增大130.27%。BDS法可实现枕下道床支承状态的快速无损检测,可与小型捣固机配合对高铁有砟轨道梁端周期不平顺进行整治。  相似文献   

12.
采用经室内试验验证的聚氨酯固化道床结构离散元数值仿真模型及室内轨枕-聚氨酯固化道床刚度试验,对不同设计厚度条件下聚氨酯固化道床结构的物理、力学性能进行了分析。研究结果表明,聚氨酯固化道床试件的总残余变形量与固化道床的厚度呈正相关关系。但厚度较小的道床同样会引起固化道床结构的弹性降低,且会削弱道床对上部荷载的衰减作用,使传递至道床底部的应力增大。综合各方面因素,建议在客货共线的线路中将预制式聚氨酯固化道床结构的合理设计厚度定为30 cm。  相似文献   

13.
CRTSI型板式无砟轨道是我国近年来高速铁路建设采用的主要结构形式,具有线路稳定、刚度均匀、轨道平顺、耐久性高、维修工作量小等优点,技术含量高,施工工艺复杂,是高铁施工核心技术之一。主要介绍CRTSI型板式无砟道床施工的施工方案和关键工艺方法。  相似文献   

14.
以乌鲁木齐城市轨道交通1号线为依托,设计宽枕板式聚氨酯固化道床轨道结构,并进行动力特性和减振性能研究。结果表明:与无砟轨道结构相比,宽枕板式聚氨酯固化道床轨道结构在列车振动荷载作用下会产生迟滞弹性变形,有利于能量耗散,轮轨垂向力均值及峰值分别减少17.9%和9.8%;无砟轨道结构脱轨系数在0.04~0.22范围内,而宽枕板式聚氨酯道床轨道结构脱轨系数在0.03~0.08范围内,行车稳定性更高;与无砟轨道结构相比,宽枕板式聚氨酯固化道床轨道结构的Z振级插入损失为8.1 dB,最大插入损失为11.18 dB,对应中心频率为40 Hz,具有较好减振性能。  相似文献   

15.
CRTSI型板式无砟轨道是我国近年来高速铁路建设采用的主要结构形式,具有线路稳定、刚度均匀、轨道平顺、耐久性高、维修工作量小等优点,技术含量高,施工工艺复杂,是高铁施工核心技术之一。主要介绍CRTSI型板式无砟道床施工的施工方案和关键工艺方法。  相似文献   

16.
高铁无砟轨道对膨胀变形值要求极为严格,地基的胀缩变形不仅对行车安全性和舒适性产生威胁,而且严重影响高速铁路线路的服役状态和使用寿命。膨胀土地基均为原状膨胀土,为研究原状膨胀土的膨胀规律,以兰新铁路第二双线一处典型原状膨胀土为对象,对3种不同厚度的膨胀土分别进行不同上覆荷载和不同含水率下的膨胀变形试验。研究结果表明:膨胀土的厚度越大,其膨胀量越大;上覆荷载对膨胀量起抑制作用,荷载越大膨胀量越小,荷载越小膨胀量越大;土样的膨胀量随含水率的增加可分为缓慢增长阶段、急速增长阶段和缓慢增长阶段;在厚度一定时,建立含水率增量与上覆荷载耦合情况下原状膨胀土膨胀量计算模型,再依据不同厚度对公式参数进行拟合。建立含水率、上覆荷载和厚度3因素耦合作用下原状膨胀土膨胀量计算模型,模型计算结果与实测数据吻合较好,为今后膨胀土地区高速铁路的修建提供一定的理论支撑。  相似文献   

17.
为验证350 km/h高速列车运营条件下聚氨酯固化道床的安全性、振动特性以及道床表面风场分布规律,在济青高速铁路开展了340~385 km/h逐级提速试验。测试结果分析表明:350 km/h高速列车运营条件下聚氨酯固化道床的行车安全性指标满足要求;相比于无砟轨道结构,聚氨酯固化道床具有更好的减振效果,在Z记权条件下其插入损失约为9.4 dB;线路中心正负风压变化最剧烈,是线路横断面中最容易发生道砟飞溅处。  相似文献   

18.
路基沉降会影响轨面不平顺,为了分析路基沉降与无砟轨道轨面不平顺间的映射关系,基于温克尔弹性地基耦合梁理论和有限元方法,建立考虑层间接触非线性整体道床轨道梁-体空间有限元模型,对轨道自重荷载和设计列车动荷载作用下轨面不平顺与路基沉降间映射关系展开研究,并在此基础上,提出城市轨道交通无砟轨道线路路基不均匀沉降的安全限值。分析结果表明:路基发生不均匀沉降时,无砟轨道结构在自重荷载和列车动荷载作用下发生跟随性沉降变形,且各层沉降幅值从上到下依次增大;路基沉降幅值越大轨面不平顺越明显,20 m沉降波长条件下,沉降幅值超过25 mm时轨道结构与路基间易形成脱空;轨面不平顺对路基沉降波长也极为敏感,20 mm沉降幅值条件下,当沉降波长超过25 m时路基与轨道结构间脱空现象明显缓解,此时轨面不平顺基本可与路基变形保持一致。  相似文献   

19.
南玉高铁六景郁江特大桥设计将钢-混部分斜拉桥结构引入时速350 km高速铁路领域,而300 m级以上大跨度桥上无砟轨道的竖向变形极易超限,影响列车通过的安全性和舒适性,因此,系统研究在此大跨桥梁结构上铺设无砟轨道的适应性十分必要。通过建立有限元及动力学模型,分析不同组合工况下无砟轨道结构的变形特点及动力特性,运用60 m弦测法探究各工况下无砟轨道的线形变化规律,从而确定大跨度钢-混部分斜拉桥铺设无砟轨道的适应性,并对设计和施工提出合理化建议。主要结论如下:在各种不利组合荷载作用下,桥上无砟轨道结构强度满足规范要求,列车通过大桥的各项安全性与舒适性指标均满足规范要求;混凝土收缩徐变和斜拉索升降温是影响无砟轨道线形标准的两大主因,应在无砟轨道施工前确保足够的沉降观测期和收缩徐变释放期,并充分考虑拉索的保温设计;在温度组合荷载作用下,桥上无砟轨道的60 m弦测不平顺幅值为6.79 mm,满足高速铁路静态验收标准;但在叠加列车荷载和收缩徐变后,变形弦测值均出现Ⅱ级及以上超限,通过合理设置预拱度后可有效改善轨道平顺性标准。  相似文献   

20.
CRTS-Ⅰ型板式无砟轨道线路路基不均匀沉降限值研究   总被引:3,自引:0,他引:3  
基于列车—轨道耦合动力学理论,考虑无砟轨道各部件间及无砟轨道与路基间接触状态非线性,建立列车—板式无砟轨道—路基三维非线性有限元耦合动力学模型,进行自重荷载、轨道中长波随机不平顺、轨道短波随机不平顺、路基不均匀沉降荷载、无砟轨道板温度梯度荷载共同作用下,高速铁路CRTS-Ⅰ型板式无砟轨道路基不均匀沉降限值研究。结果表明:无砟轨道板温度梯度荷载对无砟轨道各部件受力均有较明显的影响,因此在进行无砟轨道线路路基不均匀沉降限值研究时有必要同时考虑无砟轨道板温度梯度荷载的影响;路基上CRTS-Ⅰ型板式无砟轨道线路的路基不均匀沉降限值由底座板疲劳破坏控制,路基不均匀沉降幅值达到7mm时无砟轨道底座板的最大拉力达到疲劳破坏限值1.674MPa,因此建议高速铁路CRTS-Ⅰ型板式无砟轨道路基的不均匀沉降限值为7mm/20m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号