首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
Pedestrian scramble phasing is usually implemented to reduce pedestrian‐vehicle conflicts and therefore increase the safety of the intersection. However, to adequately determine the benefits of scramble phasing, it is necessary to understand how pedestrians react to such an unconventional design. This study investigates changes in pedestrian crossing behavior following the implementation of a scramble phase by examining the spatiotemporal gait parameters (step length and step frequency). This detailed microscopic‐level analysis provides insight into changes in pedestrian walking mechanisms as well as the effect of various pedestrian and intersection characteristics. The study uses video data collected at a scramble phase signalized intersection in Oakland, California. Gait parameters were found to be influenced by pedestrian gender, age, group size, crosswalk length, and pedestrian signal indications. Both average step length and walking speed were significantly higher for diagonally crossing pedestrians compared with pedestrians crossing on the conventional crosswalks. Pedestrians were found to have the tendency to increase their step length more than their step frequency to increase walking speed. It was also found that, compared with men, women generally increase their walking speed by increasing their step frequency more than step length. However, when in non‐compliance with signal indications, women increase their walking speed by increasing their step length more than step frequency. It was also found that older pedestrians do not significantly change their walking behavior when in non‐compliance with signal indications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents an integrated model to design routing and signal plans for massive mixed pedestrian‐vehicle flows within the evacuation zone. The proposed model, with its embedded formulations for pedestrians and vehicles in the same evacuation network, can effectively take their potential conflicts into account and generate the optimal routing strategies to guide evacuees toward either the pickup locations or their parking areas during an evacuation. The proposed model, enhancing the cell transmission model with the notion of sub‐cells, mainly captures the complex movements in the vehicle‐pedestrian flows and can concurrently optimizes both the signals for pedestrian‐vehicle flows and the movement paths for evacuees. An illustrating example concerning the evacuation around the M&T Bank Stadium area has been used to demonstrate the application potential of the proposed model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
At non‐signalized mid‐block street crossings in China's cities, pedestrians often weave between motor vehicle flows. This paper investigated the influence patterns of the gender and age of pedestrians, the presence of a pedestrian group, vehicles' interference and the crossing direction on the crossing time at non‐signalized mid‐block street crossings in Changsha, China. The results show that the crossing speed is approximately 1–1.1 m/s; the crossing time increases with increasing age, and the crossing speed of a pedestrian will be quicker when the time gap between the pedestrian and the oncoming vehicle is smaller if he/she decides to cross. This paper also analyzed the crossing time pattern when pedestrians cross lane by lane and found that pedestrians spend the most time crossing the first lane and the least time crossing the middle lane, regardless of whether they are crossing from the curb to the central island or from the central island to the curb. The crossing speed is an important input to the design of pedestrian facilities, so these findings can be applied to the assessment of pedestrian crossing safety in China's cities and can provide a basis for the design of pedestrian crossing facilities. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
The exclusive pedestrian phase (EPP) has been used in many countries to promote walking around downtown areas by increasing the ease and convenience of pedestrian crossing. However, its applicability has not been systematically demonstrated, especially when an intersection is operated in actuated mode. This paper presents an extensive simulation‐based analysis of the applicability of EPP as compared with a normal concurrent pedestrian‐phase pattern at an isolated intersection controlled by actuated logic. Actuated signal control logics for EPP‐actuated and conventional concurrent pedestrian phase‐actuated controls are developed. Both of these control logics consider pedestrian crossing demands and can adapt to changes in vehicle traffic to reduce vehicle delay as well. A simulation model of a two‐phase controlled intersection is built and calibrated based on field data using VISSIM (PTV Planung Transport Verkehr AG in Karlsruhe, Germany). Extensive analysis is conducted to reveal fully the applicable EPP domain in terms of vehicle traffic demand, pedestrian demand, vehicle turning ratio, and pedestrian diagonal crossing ratio. The results show that the performance and applicable domain of EPP are jointly determined by those five factors. EPP significantly outperforms concurrent pedestrian phase if the vehicle turning ratio is greater than 0.6 and the pedestrian diagonal crossing ratio is greater than 0.6. These results can help traffic engineers in choosing the appropriate pedestrian‐phase patterns at actuated signalized intersections. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Both coordinated-actuated signal control systems and signal priority control systems have been widely deployed for the last few decades. However, these two control systems are often conflicting with each due to different control objectives. This paper aims to address the conflicting issues between actuated-coordination and multi-modal priority control. Enabled by vehicle-to-infrastructure (v2i) communication in Connected Vehicle Systems, priority eligible vehicles, such as emergency vehicles, transit buses, commercial trucks, and pedestrians are able to send request for priority messages to a traffic signal controller when approaching a signalized intersection. It is likely that multiple vehicles and pedestrians will send requests such that there may be multiple active requests at the same time. A request-based mixed-integer linear program (MILP) is formulated that explicitly accommodate multiple priority requests from different modes of vehicles and pedestrians while simultaneously considering coordination and vehicle actuation. Signal coordination is achieved by integrating virtual coordination requests for priority in the formulation. A penalty is added to the objective function when the signal coordination is not fulfilled. This “soft” signal coordination allows the signal plan to adjust itself to serve multiple priority requests that may be from different modes. The priority-optimal signal timing is responsive to real-time actuations of non-priority demand by allowing phases to extend and gap out using traditional vehicle actuation logic. The proposed control method is compared with state-of-practice transit signal priority (TSP) both under the optimized signal timing plans using microscopic traffic simulation. The simulation experiments show that the proposed control model is able to reduce average bus delay, average pedestrian delay, and average passenger car delay, especially for highly congested condition with a high frequency of transit vehicle priority requests.  相似文献   

6.
When operated at low speeds, electric and hybrid vehicles have created pedestrian safety concerns in congested areas of various city centers, because these vehicles have relatively silent engines compared to those of internal combustion engine vehicles, resulting in safety issues for pedestrians and cyclists due to the lack of engine noise to warn them of an oncoming electric or hybrid vehicle. However, the driver behavior characteristics have also been considered in many studies, and the high end-prices of electric vehicles indicate that electric vehicle drivers tend to have a higher prosperity index and are more likely to receive a better education, making them more alert while driving and more likely to obey traffic rules. In this paper, the positive and negative factors associated with electric vehicle adoption and the subsequent effects on pedestrian traffic safety are investigated using an agent-based modeling approach, in which a traffic micro-simulation of a real intersection is simulated in 3D using AnyLogic software. First, the interacting agents and dynamic parameters are defined in the agent-based model. Next, a 3D intersection environment is created to integrate the agent-based model into a visual simulation, where the simulation records the number of near-crashes occurring in certain pedestrian crossings throughout the virtual time duration of a year. A sensitivity analysis is also carried out with 9000 subsequent simulations performed in a supercomputer to account for the variation in dynamic parameters (ambient sound level, vehicle sound level, and ambient illumination). According to the analysis, electric vehicles have a 30% higher pedestrian traffic safety risk than internal combustion engine vehicles under high ambient sound levels. At low ambient sound levels, however, electric vehicles have only a 10% higher safety risk for pedestrians. Low levels of ambient illumination also increase the number of pedestrians involved in near-crashes for both electric vehicles and combustion engine vehicles.  相似文献   

7.
There has been a growing interest in using surrogate safety measures such as traffic conflicts to analyse road safety from a broader perspective than collision data alone. This growing interest has been aided by recent advances in automated video‐based traffic conflict analysis. The automation enables accurate calculation of various conflict indicators such as time‐to‐collision and post‐encroachment time. These indicators rely on road users getting within specific temporal and spatial proximity from each other and therefore assume that proximity is a surrogate for conflict severity. However, this assumption may not be valid in many driving environments where close interactions between road users are common. The objective of this paper is to investigate the applicability of time proximity conflict indicators for evaluating pedestrian safety in less‐organized traffic environments with a high mix of road users. Several alternative behavioural conflict indicators based on detecting pedestrian evasive actions are recommended to better measure traffic conflicts in such traffic environments. These indicators represent variations in the spatio‐temporal gait parameters (step length, step frequency and walk ratio) immediately before the conflict point. A highly congested shared intersection in Shanghai, China, with frequent pedestrian conflicts is used as a case study. Traffic conflicts are analysed with the use of automated video‐based analysis techniques. The results showed that evasive action‐based indicators have higher potential to identify pedestrian conflicts and measure their severity in high mix less organized traffic environments than time proximity measures such as time‐to‐collision and post‐encroachment time. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract

This paper investigates pedestrians' traffic gap acceptance for mid-block street crossing in urban areas. A field survey was carried out at an uncontrolled mid-block location in Athens, Greece. Pedestrians' decisions and traffic conditions were videotaped in terms of the size of traffic gaps rejected or accepted, waiting times and crossing attempts and vehicle speeds. A lognormal regression model was developed to examine pedestrian gap acceptance. It was found that gap acceptance was better explained by the distance from the incoming vehicle, rather than its speed. Other significant effects included illegal parking, presence of other pedestrians and incoming vehicles’ size. A binary logistic regression model was developed to examine the effect of traffic gaps and other parameters on pedestrians' decisions to cross the street or not. The results reveal that this decision is affected by the distance from the incoming vehicles and the waiting times of pedestrians.  相似文献   

9.
In this paper, two‐tier mathematical models were developed to simulate the microscopic pedestrian decision‐making process of route choice at signalized crosswalks. In the first tier, a discrete choice model was proposed to predict the choices of walking direction. In the second tier, an exponential model was calibrated to determine the step size in the chosen direction. First, a utility function was defined in the first‐tier model to describe the change of utility in response to deviation from a pedestrian's target direction and the conflicting effects of neighboring pedestrians. A mixed logit model was adopted to estimate the effects of the explanatory variables on the pedestrians' decisions. Compared with the standard multinomial logit model, it was shown that the mixed logit model could accommodate the heterogeneity. The repeated observations for each pedestrian were grouped as panel data to ensure that the parameters remained constant for individual pedestrians but varied among the pedestrians. The mixed logit model with panel data was found to effectively address inter‐pedestrian heterogeneity and resulted in a better fit than the standard multinomial logit model. Second, an exponential model in the second tier was proposed to further determine the step size of individual pedestrians in the chosen direction; it indicates the change in walking speed in response to the presence of other pedestrians. Finally, validation was conducted on an independent set of observation data in Hong Kong. The pedestrians' routes and destinations were predicted with the two‐tier models. Compared with the tracked trajectories, the average error between the predicted destinations and the observed destinations was within an acceptable margin. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
In urban emergency evacuation, a potentially large number of evacuees may depend either on transit or other modes, or need to walk a long distance, to access their passenger cars. In the process of approaching the designated pick-up points or parking areas for evacuation, the massive number of pedestrians may cause tremendous burden to vehicles in the roadway network. Responsible agencies often need to contend with congestion incurred by massive vehicles emanating from parking garages, evacuation buses generated from bus stops, and the conflicts between evacuees and vehicles at intersections. Hence, an effective plan for such evacuation needs to concurrently address both the multi-modal traffic route assignment and the optimization of network signal controls for mixed traffic flows. This paper presents an integrated model to produce the optimal distribution of vehicle and pedestrian flows, and the responsive network signal plan for massive mixed pedestrian–vehicle flows within the evacuation zone. The proposed model features its effectiveness in accounting for multiple types of evacuation vehicles, the interdependent relations between pedestrian and vehicle flows via some conversion locations, and the inevitable conflicts between intersection turning vehicle and pedestrian flows. An illustrating example concerning an evacuation around the M&T stadium area has been presented, and the results indicate the promising properties of our proposed model, especially on reflecting the complex interactions between vehicle and pedestrian flows and the favorable use of high-occupancy vehicles for evacuation operations.  相似文献   

11.
In many cases, pedestrian crossing demands are distributed discretely along an arterial segment. Demand origins, destinations and crosswalks comprise a pedestrian crossing network. An integrated model for optimizing the quantity, locations and signal settings of mid-block crosswalks simultaneously is proposed to best trade-off the operational performances between pedestrians and vehicles. Pedestrian behavior of choosing crosswalks is captured under a discrete demand distribution. Detour distance and delay at signalized crosswalks are formulated as a measure of pedestrian crossing cost. Maximum bandwidths are modeled in analytical expressions as a measure of vehicular cost. To solve the proposed model, the Non-dominated Sorting Genetic Algorithm II (NSGA II) based algorithm is designed and employed to obtain the Pareto frontier efficiently. From the numerical study, it is found that there exists an optimal number of mid-block crosswalks. Excess available crosswalks may make no contributions to improvement in pedestrian cost when the constraint of the minimum interval between crosswalks and vehicular cost are taken into account. Two-stage crosswalks are more favorable than one-stage ones for the benefits of both pedestrian and vehicles. The study results show promising properties of the proposed method to assist transportation engineers in properly designing mid-block crosswalks along a road segment.  相似文献   

12.
Macroscopic pedestrian models for bidirectional flow analysis encounter limitations in describing microscopic dynamics at crosswalks. Pedestrian behavior at crosswalks is typically characterized by the evasive effect with conflicting pedestrians and vehicles and the following effect with leading pedestrians. This study proposes a hybrid approach (i.e., route search and social force-based approach) for modeling of pedestrian movement at signalized crosswalks. The key influential factors, i.e., leading pedestrians, conflict with opposite pedestrians, collision avoidance with vehicles, and compromise with traffic lights, are considered. Aerial video data collected at one intersection in Beijing, China were recorded and extracted. A new calibration approach based on a genetic algorithm is proposed that enables optimization of the relative error of pedestrian trajectory in two dimensions, i.e., moving distance and angle. Model validation is conducted by comparison with the observed trajectories in five typical cases of pedestrian crossing with or without conflict between pedestrians and vehicles. The characteristics of pedestrian flow, speed, acceleration, pedestrian-vehicle conflict, and the lane formation phenomenon were compared with those from two competitive models, thus demonstrating the advantage of the proposed model.  相似文献   

13.
以无信号灯路口人车交通行为为研究对象,对行人和机动车辆在无信号灯路口的整体交通行为进行分类预测。在对路口现场交通情况进行拍摄后,用电脑的分帧技术对所需要的数据进行提取和分类,而后建立BP神经网络模型,确定神经网络的输入变量与输出变量。将样本数据导入神经网络并进行训练和测试后,得出行人和车辆过街类型的分类准确率,并且通过准确率所达到的标准来证明了BP神经网络模型的可行性。  相似文献   

14.
This paper presents a multi‐objective optimization model and its solution algorithm for optimization of pedestrian phase patterns, including the exclusive pedestrian phase (EPP) and the conventional two‐way crossing (TWC) at an intersection. The proposed model will determine the optimal pedestrian phase pattern and the corresponding signal timings at an intersection to best accommodate both vehicular traffic and pedestrian movements. The proposed model is unique with respect to the following three critical features: (1) proposing an unbiased performance index for comparison of EPP and TWC by explicitly modeling the pedestrian delay under the control of TWC and EPP; (2) developing a multi‐objective model to maximize the utilization of the available green time by vehicular traffic and pedestrian under both EPP or TWC; and (3) designing a genetic algorithm based heuristic algorithm to solve the model. Case study and sensitivity analysis results have shown the promising property of the proposed model to assist traffic practitioners, researchers, and authorities in properly selecting pedestrian phase patterns at signalized intersections. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Pedestrians and cyclists are amongst the most vulnerable road users. Pedestrian and cyclist collisions involving motor-vehicles result in high injury and fatality rates for these two modes. Data for pedestrian and cyclist activity at intersections such as volumes, speeds, and space–time trajectories are essential in the field of transportation in general, and road safety in particular. However, automated data collection for these two road user types remains a challenge. Due to the constant change of orientation and appearance of pedestrians and cyclists, detecting and tracking them using video sensors is a difficult task. This is perhaps one of the main reasons why automated data collection methods are more advanced for motorized traffic. This paper presents a method based on Histogram of Oriented Gradients to extract features of an image box containing the tracked object and Support Vector Machine to classify moving objects in crowded traffic scenes. Moving objects are classified into three categories: pedestrians, cyclists, and motor vehicles. The proposed methodology is composed of three steps: (i) detecting and tracking each moving object in video data, (ii) classifying each object according to its appearance in each frame, and (iii) computing the probability of belonging to each class based on both object appearance and speed. For the last step, Bayes’ rule is used to fuse appearance and speed in order to predict the object class. Using video datasets collected in different intersections, the methodology was built and tested. The developed methodology achieved an overall classification accuracy of greater than 88%. However, the classification accuracy varies across modes and is highest for vehicles and lower for pedestrians and cyclists. The applicability of the proposed methodology is illustrated using a simple case study to analyze cyclist–vehicle conflicts at intersections with and without bicycle facilities.  相似文献   

16.
Abstract

Slow‐moving vehicles, including agricultural vehicles, on arterial highways can cause serious delays to other traffic as well as posing an extra safety risk. This paper elaborates on a small‐scale solution for these problems: the passing bay. It investigates the impacts of a passing bay on the total delay for other motorized vehicles, the number of passing manoeuvres and hindered vehicles, and the mean delay per hindered vehicle. The latter is also considered to be an indicator for traffic safety. The calculations are performed for two characteristic trips with a slow‐moving vehicle. The passing bay is an effective solution to reducing delays on arterial highways when two‐way hourly volumes exceed 600–1000 vehicles. The effects depend on the trip length and speed of the slow‐moving vehicle, and on the passing sight distance limitations of the road. A distance of 2–4?km between the passing bays seems an acceptable compromise between the reduction of delay for other motorized vehicles and the extra discomfort and delay for drivers of slow‐moving vehicles. This result also shows that passing bays are not effective in regions where slow‐moving vehicles mainly make trips shorter than this distance.  相似文献   

17.
In traffic-crowded metropolitan areas, such as Shanghai and Beijing in China, right-turn vehicles that operate with a permitted phase at signalized intersections are normally permitted to filter through large numbers of pedestrians and bicycles. To alleviate such conflicts and improve safety, traffic engineers in Shanghai introduced a prohibited–permitted right-turn operation, adding a subphase to the permitted phase in which right-turns are prohibited. Unfortunately, the prohibited subphase would reduce the capacity of right-turn movements when it prohibits right turns even if there are few pedestrians and bicycles crossing the street. This paper aims at quantifying the impact of both non-vehicular flows and the prohibited subphase on the right-turn capacity, and then proposes a strategy to determine appropriate prohibited–permitted right-turn operation that minimizes the capacity reduction caused by the prohibited subphase. To achieve this goal, we improved the pedestrian and bicycle adjustment factor described in the Highway Capacity Manual by taking into account: (1) the variety in space competition between pedestrians and bicycles, and (2) the effect of two conflict zones in each phase on right-turn operation. In addition, we revised the capacity estimation model in the Highway Capacity Manual, and developed a model based on bicycle/pedestrian volume fluctuation to describe the capacity reduction due to both non-vehicular flows and the prohibited subphase. Furthermore, we proposed a timing strategy for the onset and duration of appropriate prohibited subphase. When bicycle and pedestrian volumes are low, the actuated strategy turns to the permitted phase. When these volumes are moderate, the strategy turns to the prohibited–permitted operation. With the volumes increasing, the prohibited subphase onset advances and duration increases. In these two scenarios, the new strategy has higher right-turn capacity than the current pretimed prohibited–permitted operation. Unfortunately, when bicycle and pedestrian volumes are high, the strategy yields similar right-turn capacity. However, the new prohibited subphase has less potential vehicle–bicycle and vehicle–pedestrian conflicts.  相似文献   

18.
Abstract

Pedestrians are currently attracting the interest of various researchers and practitioners, particularly urban and transport planners. Analysis of the pedestrian behavior, environment and modeling has been carried out in diverse instances in the context of pedestrian planning. This paper seeks to identify the content of each of these three research areas and designate the linkages that connect their interests providing insights into planning indoor pedestrian facilities. To achieve this objective, a review of the literature on pedestrians walking indoors and indoor pedestrian environments was conducted. Understanding pedestrian behavior is fundamental in the pedestrian planning process. Principles of decision-making, cognition, wayfinding and flows were studied. When analyzing the pedestrian environment, Space Syntax and wayfinding analysis were found to be established methods that are an integral part of this field. Finally, the majority of the existing modeling approaches were identified. It was found that despite the dynamic evolution of each area, the integration of different research perspectives is weak. The paper concluded with the proposal of a mindmap which brings together all the concepts found in the literature and which should be explored for a more comprehensive planning of indoor pedestrian facilities.  相似文献   

19.
On many urban low‐grade or branch roads, especially in medium or small cities in China, bicyclists and motorists commonly share the non‐barrier road surface. Because bicycles are unpredictable and unstable when moving, motorized vehicles must reduce their speed to safely approach and overtake them. In this study, the gradual deceleration process a motorized vehicle undergoes before it passes a bicycle was analyzed. The motorist was assumed to prefer a comfortable deceleration and to select a higher deceleration rate only when the distance to the bicycle was insufficient to reduce the car's speed to the expected value at a comfortable deceleration rate. Cellular automata (CA) simulations were used to reveal the flow characteristics of motorized vehicles reacting to bicycles traveling along the roadside, and the results show that for the general velocities of motorized vehicles and bicycles traveling on urban branch roads, the road capacity for motorized vehicles is not related to the number of bicycles present. However, the average travel time of motorized vehicles is significantly affected by the presence of bicycles when the number of motorized vehicles on the road is small. In addition, motorized vehicles' average travel time is more influenced by disturbances in the flow of motorized vehicles than by bicycles when the number of motorized vehicles on the road is large. Field observations and surveys were used to validate the traffic behaviors and simulation results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
This paper examines pedestrian anatomical injuries and crash characteristics in back‐to‐traffic and facing‐traffic crashes. Pedestrian crashes involving pedestrians walking along streets (i.e. with their backs to traffic or facing traffic) have been overlooked in literature. Although this is not the most frequent type of crash, the crash consequence to pedestrians is a safety concern. Combining Taiwan A1A2 police‐reported accident data and data from the National Health Insurance Database from years 2003–2013, this paper examines anatomical injuries and crash characteristics in back‐to‐traffic and facing‐traffic crashes. There were a total of 830 and 2267 pedestrian casualties in back‐to‐traffic and facing‐traffic crashes respectively. The injuries sustained by pedestrians and crash characteristics of these two crash types were compared with those of other crossing types of crashes (nearside crash, nearside dart‐out crash, offside crash, and offside dart‐out crash). Odds of various injuries to body regions were estimated using logistic regressions. Key findings include that the percentage of fatalities in back‐to‐traffic crashes is the highest; logistic models reveal that pedestrians in back‐to‐traffic crashes sustained more head, neck, and spinal injuries than did pedestrians in other crash types, and unlit darkness and non‐built‐up roadways were associated with an increased risk of pedestrian head injuries. Several crash features (e.g. unlit darkness, overtaking manoeuvres, phone use by pedestrians and drivers, and intoxicated drivers) are more frequently evident in back‐to‐traffic crashes than in other types of crashes. The current research suggests that in terms of crash consequence, facing traffic is safer than back to traffic. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号