首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
无支座连续刚构桥是最近新发展起来的一种新型结构,已在广州、长沙、福州等城市的轨道交通结构中 得到大量应用,但目前对于无支座连续刚构桥的抗震性能研究较少。以典型无支座连续刚构桥为背景,首先应用 增量动力分析方法,揭示无支座连续刚构桥的地震损伤、破坏过程;在此基础上基于地震易损性分析方法,给出 无支座连续刚构桥桥墩典型地震易损性曲线,探讨无支座连续刚构桥地震损伤破坏风险。  相似文献   

2.
根据广州地铁14号线高架线桥梁景观和绿色建造的总体设计目标,全线标准段采用4×40m无支座单薄壁墩连续刚构桥、预制节段拼装施工的绿色建造技术。为适应温度及收缩徐变作用,桥梁根据桥高调整联长及跨度。设计研究确定分离边墩连续刚构桥梁刚度标准、节段拼装桥梁强度验算方法;通过先简支再连续后固结的成桥工序,释放预应力二次力对边墩的作用。斜跨路段采用大跨度曲线Y形刚构桥,有效降低大跨度桥梁梁高;薄壁边墩后固结,改善梁端刚度。上部结构Y形三角刚架区采用满堂支架或钢管支架施工,通过控制支架刚度,避免施工阶段次内力锁定在斜腿刚构内,保证初始线型满足设计要求。  相似文献   

3.
研究目的:曲线槽形梁是一种梁、板组合的开口结构,在竖向荷载作用下梁体会产生弯扭耦合效应,道床板会发生双向弯曲和扭转,其受力较为复杂。结合一跨双线铁路曲线简支槽形梁的受力分析,研究曲线槽型梁的力学特性并指导设计和施工。研究结论:曲线槽形梁的受力呈现明显的空间特性,在竖向荷载作用下,曲线外侧主梁下缘承受的拉力较大,曲线内侧相对较小,道床板的剪力滞现象比较显著,支座不均匀沉降10 mm对梁体的受力影响不大。在上部竖向荷载逐渐增加的过程中,主梁上翼缘产生的内向侧移越来越大,槽口逐渐缩小。弯扭耦合效应使槽形梁曲线内、外侧的支反力大小不一,曲线外侧梁端支座反力比曲线内侧大,梁体有向曲线内侧整体平移变形的趋势。  相似文献   

4.
为探讨温度对受力复杂的曲线斜拉桥结构成桥使用舒适性及安全性的影响,以刚果布拉柴维尔滨河大道桥为工程背景,以9个不同曲率半径斜拉桥模型为例,分别计算其在季节温差和梯度温度工况下主梁竖向位移、支座反力的变化情况,分析温度荷载对曲线斜拉桥支座反力的影响规律。结果表明:梯度温度正温差工况下,曲线外侧主梁的竖向位移总是小于内侧,致使主梁发生向外翻转的趋势,且随着曲率半径减小翻转趋势越来越明显;曲线段外侧支反力大于内侧,其中过渡墩支座所受影响最大;整体升温效应会使全桥梁段产生向外扭转趋势,但影响小于梯度温度正温差,且整体升温还会使桥梁结构产生跨中上拱、边跨下挠的趋势。  相似文献   

5.
研究目的:针对武汉站联合桩基一般承台面积较大、柱底反力复杂、偏心效应显著,且大多承受八字斜柱反力,水平推力很大,本文分别按刚性桩基承台和柔性桩基承台两种模式进行受力分析。研究结论:刚性计算主要是确定反力合理形心,按反力合理形心与桩基形心重合进行布桩,并检算各荷载组合下桩基受力情况;当反力合理形心无法与桩基形心重合时,按偏心荷载计算桩基受力。柔性计算可以充分考虑承台刚度、土层约束、扭矩荷载等因素,采用有限元计算得到桩的竖向、水平受力情况和桩身弯矩、支座位移等,可与刚性计算结果对比校核,并对进一步计算桩身裂缝、上部框架结构等提供数据。  相似文献   

6.
以多跨长联连续梁杭州钱江铁路新桥为研究对象,对不同偏载工况下支座脱空前后的支反力进行研究。基于多跨长联连续梁的对称性,采用MIDAS/Civil建立半梁模型,以支反力偏载系数、支反力增大系数为研究指标,分析4种偏载工况下支座未脱空时的支反力分布规律,分析8种支座脱空工况下,自重和最不利活载对各支墩支座支反力的影响。研究结果表明:支墩和支座位置均对支反力偏载系数有较大影响;支座未脱空时,边支座最大支反力由双线加载控制,中支座最大支反力由四线加载控制;支座脱空对本支墩支座影响较大,邻近支墩支座次之,其他支墩支座影响最小;边支座脱空对支反力增大系数的影响较中支座脱空大。  相似文献   

7.
为研究斜支承连续箱梁的内力分布规律和斜交角变化对内力分布的影响,分别给出均布扭矩荷载和集中扭矩荷载作用下,简支箱梁约束扭转控制微分方程初参数解的简化结果.以简支箱梁为基本结构,斜支点的约束反力为多余未知力,建立多跨斜支承连续箱梁的力法方程.选取斜支承两跨连续箱梁为算例,用本文方法和ANSYS软件计算其在竖向均布荷载作用下的各项内力,并分析斜交角变化对各项内力的影响.研究结果表明:按本文方法计算的弯矩和扭矩与ANSYS计算值吻合良好;在竖向对称均布荷载作用下,弯矩和扭矩沿梁轴对称分布,双力矩反对称分布,各项内力随斜交角的变化具有单调性;在竖向偏心均布荷载作用下,各项内力均不再对称分布,其随斜交角的变化规律也更加复杂.  相似文献   

8.
为确定移动荷载作用下曲线桥的动力学特性,以江西省某四跨连续曲线箱梁桥为实例,运用有限元软件ANSYS建立了该桥的有限元计算模型。计算了该曲线桥的自振频率以及在移动荷载作用下该曲线桥的竖向位移、扭转角、横向位移等的变化规律。同时将有限元数值计算结果与现场试验测试数据进行了对比,验证了该曲线桥有限元模型的正确性,在此基础上分析了车辆离心力、车辆载重、车速等参数对曲线桥动力响应的影响。结果表明,离心力使曲线桥产生朝向外侧的横向位移,使跨中扭转角变大;随着载重的增加,曲线桥跨中竖向、横向位移,扭转角以及支座反力呈线性增长;随着车速的增加,曲线桥跨中竖向位移先增大后减小,横向位移和扭转角逐渐增大,支座反力逐渐减小。  相似文献   

9.
以三跨独柱单、双支撑连续箱梁为基本结构,针对不同曲线半径、不同边墩支座间距的桥梁建立有限元模型,研究2种结构边墩支座最小反力变化规律,进而分析独柱双支撑连续箱梁桥横向抗倾覆性能及相对于独柱单支撑的改善情况。数值仿真结果表明:边墩支座间距越大,独柱双支撑式桥梁横向抗倾覆能力越强;相对于独柱单支撑式桥梁,独柱双支撑能够很大程度增强梁体的横向抗倾覆稳定性,桥梁曲线半径较小且边墩支座间距较小时效果明显;合理使用独柱双支撑结构形式,适当增大边墩支座间距,可较大程度地提高桥梁横向抗倾覆性能。  相似文献   

10.
黄韩侯铁路2×64 m T形刚构桥设计   总被引:1,自引:1,他引:0  
重点研究双薄壁桥墩T形刚构桥的设计要点。依托黄韩侯铁路2×64 m T形刚构桥,采用有限元分析方法,建立全桥模型进行计算,研究桥墩横撑内力特性,采用圆弧形预应力横撑能较好地解决双薄壁桥墩横撑配筋设计。  相似文献   

11.
在顶推施工过程中,由于滑道高程控制不精确、施工管理不当等因素会导致支座脱空,从而导致支反力的重分布,某些支座支反力必然增加,在支撑位置附近局部应力会比较突出,所以有必要研究支座脱空对混凝土箱梁受力性能的影响。结合某预应力混凝土连续箱梁桥顶推施工实例,通过建立三维有限元实体模型,选取某工况下的支座发生脱空进行分析。计算结果表明:支座脱空对支座支反力及箱梁的局部应力影响比较大,减小了顶板受拉和底板的受压安全储备,梁体下挠位移增大,增加了摩阻力,应在施工过程中严密监控支座,避免发生支座脱空。  相似文献   

12.
研究目的:娄底市共荣路上跨娄邵铁路采用(25+40+25)m预应力混凝土斜交连续箱梁,斜交角度为55°,支架现浇施工方法。由于该梁桥面较宽,斜交角度较大,为了对实际结构进行更准确的模拟,本文采用空间梁格及平面单梁两种有限元分析方法对预应力混凝土斜交连续梁进行对比分析研究。研究结论:(1)为方便预应力混凝土斜交连续梁设计,建议采用单梁法设计,空间梁格法进行验证;(2)大角度斜交连续梁跨中最大正弯矩和中支点负弯矩在恒载作用下均小于正桥,但剪滞效应比正交箱梁更为显著,设计时必须充分考虑其剪滞效应;(3)斜交连续梁钝角边侧支点反力比锐角边侧支点反力要大15%左右,设计时特别注意支座的选择及下部结构设计;(4)为增加各箱室之间横向刚度,建议在边跨及中跨设置几道横隔板;箱内可采用两次倒角使其不出现锐角,以消除应力集中现象;梁体建议采用全预应力结构设计,并将梁体普通钢筋适当加强;(5)本研究结论可为预应力混凝土大跨度斜交连续梁桥设计提供参考。  相似文献   

13.
近年来采用空间杆系模拟曲线梁结构受力时假定梁单元形心与剪切中心重合,无法计算约束扭转效应及翘曲和畸变,结构计算结果与实际受力存在偏差,因此,应采用实体有限元进一步模拟结构真实受力。本文在对预应力混凝土曲线连续箱梁常见支座病害分析的基础上,采用实体有限元建立结构计算模型对主梁施工阶段支座反力的变化进行分析,并与杆系计算结果比较。研究结果表明:曲线梁桥扭转效应和平面内变位是其支座病害出现的直接原因,宜在设计中通过合理设置主梁支座及限位来消除其对结构的不利影响;相对来说,采用实体有限元比采用杆系有限元计算曲线梁结构受力更趋合理。  相似文献   

14.
研究目的:在设计小半径曲线梁桥时,由于周期紧,经常习惯的布置通长预应力钢束,这样虽然可以节省设计时间,但是这种布束方式会造成曲线内外侧受力不均匀,造成材料浪费。本文以北京市广渠路五环立交一半径R=54.5 m的预应力混凝土匝道桥为工程实例,分别按照预应力通长束以及"长束+短束"布置,利用MIDAS/Civil分别对于两种布束方式建立三维杆单元模型,讨论不同布束方式下结构内外侧支座反力、扭矩及扭转应力、有效预应力及结构经济性方面的差异,为设计提供参考。研究结论:通过本文的研究可知,正确的布束方式应该是"长束为主、短束为辅",合理的预应力布束方案可以有效地改善结构的受力情况,减小结构的变形,使曲线内外侧支座反力均匀,降低预应力损失并提高结构的经济性。  相似文献   

15.
研究目的:大跨度V形刚构拱组合桥利用V形连续刚构的主跨斜腿与钢管混凝土拱的拱座连接形成,具有拱和V形连续刚构共同受力的特点,其结构性能已不同于一般的梁拱组合体系桥。通过本研究,揭示V形刚构拱组合桥的梁拱组合效应。研究结论:由于拱肋对V形连续刚构桥的加劲作用,V形刚构拱组合桥中跨在活载作用下的最大弯矩和最大挠度均减小约50%;组合结构桥由于混凝土收缩徐变引起的中跨后期下挠仅为V形连续刚构桥跨中下挠量的12%;V形刚构拱组合桥的竖向刚度是V形连续刚构桥的2.56倍以上,V形刚构拱组合桥的梁拱组合效应非常明显。  相似文献   

16.
为满足既有异型刚构桥抬高纵断面并外移股道的功能需求,在桥上设置纵向分段空心道砟槽板,采用植筋方式与既有桥面连接,以满足抬道后轨道稳定要求,减小二期恒载。采用板单元模型计算内力,检算既有结构配筋,超限处采用粘贴钢板加固。检算支座反力,对超限支座进行更换。对于新建股道超出既有桥范围处,拆除部分悬臂,新建加宽桥梁。经计算,采取的设计及工程措施满足站线道岔跨越桥梁断缝的要求。  相似文献   

17.
为全面掌握T字形钢箱梁异形块空间受力特性,以长沙市红旗路主线65号~68号墩钢箱梁异形块为例,对箱梁的截面总体布置、顶底板、横隔板及纵肋进行详细设计,并选用MIDAS/Civil考虑剪切变形的厚板单元,进行全桥空间精细化仿真建模,研究不同荷载工况下的结构位移、应力、支座反力、自振特性及局部屈曲情况,验证设计方案的合理性。研究结果表明:该桥位移、支反力不均匀现象明显,即使在恒载作用下,钢箱梁同一截面处的位移和支反力仍有较大差别;偏载作用下,这种效应更为显著;最不利工况组合下,钢箱梁最大Mises应力达到232.8 MPa,发生在66号墩b支座底板和加劲肋连接处,因此设计中应对支座处构件进行适当加强;局部轮压作用下,横隔板具有足够的安全系数,不会发生屈曲;采用钢筋混凝土桥面板能大幅增加异形钢桥的刚度,使荷载分配更为均匀。本文结果可供类似桥梁的设计计算作为参考。  相似文献   

18.
基于有限元方法建立桥上无缝线路单层弹簧阻力模型,研究了刚构桥及相邻简支梁桥桥墩纵向水平刚度匹配关系对梁轨相对位移的影响。采用铁路上常用的3种跨度刚构桥进行对比计算分析,结果表明,在刚构桥全桥制动时,刚构桥桥墩纵向水平刚度在一个范围内,梁轨相对位移随着刚构桥相邻两侧简支梁桥桥墩纵向水平刚度的增加先降低后增加;小于该范围时,梁轨相对位移随着简支梁桥桥墩刚度的减小而减小;而大于该范围时,梁轨相对位移变化规律与小于该范围的规律相反;并且该刚度范围随着刚构桥总长度的增加而增大。对于60 m+100 m+60 m的刚构桥,上述范围为1 1001 400 kN//(cm·双线);当刚构桥桥墩刚度取定为1 100 kN/(cm·双线),简支梁刚度从800 kN/(cm·双线)降低到400 kN/(cm·双线)时,附加伸缩力降低,梁轨相对位移先降低后增加,采用归一化方法处理数据,得出最优刚度取值为455 kN/(cm·双线)。  相似文献   

19.
研究目的:为了给高速铁路大跨连续梁桥纵向减震设计提供依据,本文基于某(60+100+100+60)m大跨连续梁桥,对比研究采用Lock-up装置、粘滞阻尼器和双曲面球型减隔震支座的减震机理与减震效果,对影响减隔震效果的相关参数进行分析研究,并讨论减隔震装置的合理参数区间以及适用范围。研究结论:(1)Lock-up装置不耗能,通过改变结构地震力分配路径来减小固定墩内力响应,但会减小结构纵向振动周期,导致结构总体内力响应增加,因此对于矮墩桥梁的减震效果较好;(2)粘滞阻尼器不改变桥梁结构的动力特性,主要通过滞回耗能来减小结构地震响应;(3)采用双曲面球型减隔震支座后,结构的纵向振动周期延长,支座滞回耗能为结构提供了附加阻尼,显著减小了固定墩的内力,但同时增加了墩梁相对位移;(4)该研究成果可以为高速大跨连续梁纵向减震设计提供参考。  相似文献   

20.
叶松 《中国铁路》2023,(2):13-18
提出一种桥梁新型多功能支座,重点探讨此支座对桥上无缝线路纵向受力与变形的影响规律,以杭温铁路义乌特大桥为工点,对比研究桥梁采用固定墩设计方案及中墩更换为多功能支座后的桥上无缝线路力学特性,并在此基础上提出支座优化建议。研究得到以下结论:多功能支座方案可将桥梁的伸缩位移零点调整到桥梁主跨中点,从而减小桥梁温度跨度,解决义乌特大桥不适合做刚构桥的地形限值条件;当多功能支座摩擦系数小于0.005时,多功能支座方案相比传统支座方案的无缝线路受力优化幅度较小,摩擦系数大于0.005时,支座摩擦力可完全抵消列车制动力,无缝线路受力将得到大幅优化;随着摩擦系数的增加,钢轨伸缩力小幅增加,钢轨制动力较大幅度减小,摩擦系数为0.005时,制动力最小;建议多功能支座后续的优化方向为增大支座摩擦系数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号