首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 336 毫秒
1.
盾构法施二已成为开挖城市地铁隧道的主要工法。但盾构施工中,刀盘驱动扭矩过大,始终是制约施工进度的主要因素。从盾构机刀盘驱动系统、土仓内切削土体、泡沫系统、刀盘开口率、刀具选型等5个方面对盾构机刀盘驱动扭矩过大的原因进行了分析,提出了切实可行的解决办法,并在沈阳地铁一号线云沈区间盾构施工中得到了成功的应用。  相似文献   

2.
研究目的:在盾构施工过程中,盾构机与岩土体相互作用间具有强烈的耦合关系,如何通过仿真技术分析各因素对盾构施工过程中隧道受力和地表沉降的影响,是保障隧道施工安全的必要条件。本文以大连地铁202标段为例,对盾构开挖进行模拟,并结合工程实际地质情况和现场监测数据,进行三维仿真分析,研究其施工过程的影响因子及效应。研究结论:分析结果表明:(1)随着土舱压力的增大,地表沉降呈减小趋势,掌子面上的应力呈增大趋势,且塑性区范围增大;(2)注浆量增大,地表沉降减小,当注浆量过大时,破坏土体的自稳性,地表沉降变大;(3)盾构机在穿越不同土层时,地表变化是不同的,可根据模拟结果调整参数;(4)本研究成果可用于复杂环境下地铁盾构隧道的监测。  相似文献   

3.
为了研究双线隧道盾构施工对周围土体的扰动规律及其控制措施,在讨论双孔平行隧道地表沉降计算公式在厦门地铁某区间隧道适用性的基础上,采用双孔平行隧道地表沉降计算公式、数值模拟及现场监测3种方法,揭示双线地铁隧道盾构施工引起的地表沉降分布规律和地表动态变形特性,分析影响地表沉降的施工控制参数的效果。结果表明:(1)双孔平行隧道地表沉降计算公式具有较好的适用性,双线隧道盾构施工完成后,地表形成非对称的"W"形沉降槽;(2)地表沉降本质上是盾构施工引起的土体损失累积造成的,在开挖面到达目标面时,实测地表沉降达到最终沉降值的45%;(3)设置合理的同步注浆、土舱压力和推进速度参数,可以有效控制地表沉降,建议增加同步注浆量作为控制地表沉降的首选措施。  相似文献   

4.
研究目的:以北京地铁八号线某区间隧道盾构工程为依托,采用FLAC模拟预测盾构施工引起的地表及其附近建筑物的变形规律,为盾构隧道施工安全通过地表建筑物时的合理施工参数确定和现场监测方案的制定提供技术支撑。研究结论:(1)采用数值模拟得到北京地铁隧道盾构施工引起的地表变形规律,地表横向沉降曲线在水平方向上基本对称,建筑物对其周围区域地表变形影响较大,对其所在区域地表变形影响相对较小,最大差异沉降为8,09 mm;(2)数值模拟预测结果表明两隧道开挖对地表影响的范围主要在两隧道中心左右各36 m,开挖面影响区域为开挖面前方24 m及开挖面后方20 m范围内,施工时应重点监测;(3)实践表明实测曲线与数值模拟曲线吻合较好,数值模拟是预测盾构施工对地表及邻近建筑物变形影响规律的有效手段;(4)研究成果可用于地铁盾构施工对地表邻近建筑物的变形控制方案的制定。  相似文献   

5.
研究目的:在双线隧道盾构掘进过程中,先开挖隧道地层变形会对后开挖隧道地层变形产生不可忽视的影响,导致双线隧道盾构掘进完成后地表沉降存在差异性。依托天津地铁某盾构区间隧道掘进工程,基于FLAC3D软件建立隧道掘进过程的有限元模型,从隧道开挖变形、地表沉降的角度分析先挖线路对后挖线路变形特征的影响,验证双线隧道盾构施工导致地表沉降的叠加效应。为保证盾构掘进过程中地表沉降不超标,通过数值模拟分析盾构土仓压力、同步注浆量和出渣量等因素对地表最大沉降量的影响,有效指导盾构隧道施工参数的选择,最后通过现场监测数据验证数值模拟结果的正确性。研究结论:(1)前序次开挖隧道对后序次开挖隧道的隧道拱顶沉降与地表沉降均存在叠加效应影响,后序次开挖隧道的拱顶沉降及地表沉降均略大于前序次隧道的对应沉降值;(2)数值模拟结果与现场实测结果的对比显示,实测地表沉降值相比数值模拟计算值分别高出5. 78 mm、4. 97 mm,隧道的管片沉降实测值与计算值误差均在5%以内,数值模拟计算误差均处于可控范围内,一定程度上验证了数值模拟结果的正确性;(3)本研究结论在城市地铁盾构(TBM)法施工领域,对地表沉降控制方面的机理研究和实践操作有较好的应用效果。  相似文献   

6.
针对盾构机在富水粉细砂层中修建地铁引起的地表沉降问题,基于地表沉降理论,以太原地铁2号线某富水粉细砂层的盾构掘进区间段为研究对象,模拟不同开口率的刀盘对地表沉降的影响.结果 表明,土压平衡式盾构机采用大开口率刀盘更适用于掘进富水粉细砂层,选用50%开口率的刀盘的土压平衡盾构机可成功将地表沉降控制在2 cm以内;推导出的经验公式适用于盾构机掘进富水粉细砂层的地表沉降计算;根据盾构实测出土量最终确定刀盘开口率为51%的盾构机更适合掘进太原地区富水粉细砂层.  相似文献   

7.
刀盘作为盾构机的关键执行部件,设计、制作得好坏直接关系到盾构机的工作效率及成败。通过分析狮子洋隧道工程的地质特点,给出刀盘结构设计、开口率和刀具配置方案,并给出刀盘扭矩计算公式,使盾构在开挖过程中避免因刀盘强度不足而引起的施工问题。  相似文献   

8.
黄土地层地铁盾构施工地表变形规律预测研究   总被引:1,自引:0,他引:1  
研究目的:西安地铁是我国首次在黄土地层修建地铁,黄土地层具有湿陷性等特殊的物理力学特性,盾构是西安地铁隧道的主要施工方法之一,但有关西安地铁盾构施工诱发的地表沉降特性预测的研究成果目前还很少,急需开展黄土地层地铁盾构施工诱发的地表变形规律预测方法研究,目的是为盾构施工地表沉陷监测方案的制定和盾构施工参数的确定提供理论依据,以保证隧道盾构安全施工。研究结论:通过理论预测计算得到的沉降值与西安地铁某区间隧道的地表沉降实测数据进行了对比分析,研究结果表明:(1)给出的地表沉降预测公式预计的地表沉降趋势和数据与实测值基本一致;(2)盾构施工时,正面附加推力可以维持开挖面前方土体的稳定,但正面附加推力的大小对地表竖向位移量的大小会产生影响;(3)盾构施工时,影响地表竖向位移因素很多,而盾尾间隙的大小对地表竖向位移影响最大;(4)盾构施工时,地表沉降量随着距隧道轴线距离的增加变形量逐渐减小,在隧道轴线上方变形最大。  相似文献   

9.
研究目的:上软下硬地层为城市地铁施工中的一种特殊地质,在这种地层中,盾构施工的条件与已有经验公式的假设条件存在差异,并有可能对衬砌、箱涵与管线结构造成工程风险。因此,有必要基于实际工程的监测数据进行针对性的研究。研究结论:本文基于长期施工监测数据的分析,对于某城市地铁上软下硬地层的盾构施工,有如下结论:(1)本区段单线盾构施工时,横向沉降槽形状会受到施工工况的影响,基本符合Peck曲线,最大沉降值大致位于开挖隧道中心线处,产生了较为显著的地表沉降,最大值接近30 mm;(2)本区段盾构施工地表沉降纵断面沉降曲线形状分为4个阶段,掌子面通过时出现较大日沉降;(3)本区段上软下硬地层盾构施工过程中,因为隧道衬砌、箱涵、热力管线自身具有一定刚度,盾构施工时结构沉降会小于土体沉降;衬砌沉降幅值在[-1,+2]mm区间,箱涵、热力管线沉降幅值在[-12,+1]mm区间;(4)本研究成果可为类似上软下硬地层地铁盾构施工设计与施工提供参考。  相似文献   

10.
考虑施工过程的地铁盾构仿真模拟及沉降分析   总被引:1,自引:0,他引:1  
研究目的:随着城市建设的不断发展,地铁的开发和利用已经扩展到各个工程领域,且发挥着重要的社会和经济效益。同时,地下隧道网络的不断完善使得盾构施工现象大量涌现,施工的相互影响问题也日益突出。本文以大连地铁202标段香沙区间为例,对盾构开挖引起地表沉降规律进行模拟,并结合工程实际地质情况和现场监测数据进行盾构开挖的三维仿真分析,研究其对周围环境的影响效应。研究结论:结果表明:(1)在盾构施工中,横向地表沉降呈V形,即在盾构正上方地表沉降大,两边沉降逐渐减小;(2)纵向地表沉降呈S形,即盾构开挖面正前方呈隆起,开挖面后呈下沉,在距开挖面后一定距离沉降呈稳定;(3)本研究成果可用于施工过程中地铁盾构隧道的监测与分析。  相似文献   

11.
研究目的:地铁叠线隧道由于掘进过程中上下线相互影响且大部分埋深较浅,其对地层的扰动相比常规隧道更为剧烈。本文以佛山地铁3号线某区间叠线隧道为工程背景,利用数值模拟软件建立有限元模型,研究叠线隧道掘进过程中横剖面上土体移动规律以及地表沉降规律,并探讨掘进面压力以及注浆压力对地表沉降的影响,从而为现场选择合理的地铁叠线隧道盾构掘进施工参数提供理论依据。研究结论:(1)叠线隧道掘进引起的地表沉降具有叠加效应;(2)上线隧道掘进时会引起下线隧道的上浮;(3)浆液处于软化阶段时,地表沉降会急剧增大,从注浆到浆液硬化,这一过程对地表沉降的贡献约40%;(4)增大盾构机掘进面压力以及注浆压力可以有效减小地表沉降,但当注浆压力大于200 k Pa时其作用不再明显;(5)本研究结论可为叠线隧道盾构施工时控制地表沉降提供理论指导。  相似文献   

12.
地铁盾构顶进力对地层移动影响的数值分析   总被引:1,自引:1,他引:0  
以城市地铁工程土压平衡式盾构为对象,建立了盾构—地层相互作用的三维有限元模型。模型中考虑了盾构机与地层的接触关系、盾构机刀盘开口率的影响,实现了盾构机后方推力与掘削面土舱压力的分开加载。基于该数值模型研究了土压平衡式盾构机面板和盾壳上的接触压力分布特征,获得了不同顶进力作用下地表及地中的沉降及纵向移动分布特征。  相似文献   

13.
为确保土压平衡盾构机下穿施工既有地铁运营隧道的安全,利用三维数值有限元软件精细化建模,考虑注浆压力和掌子面压力变化的影响,多工况模拟土压平衡隧道施工获得运营隧道变形规律。通过分析土压平衡盾构机下穿施工过程中的位移响应,判定上部交叉运营地铁隧道所受影响并给出合理的注浆压力和掌子面压力参数。工程实际中利用莱卡TS30监测机器人建立了自动监测系统,对运营隧道的位移进行了监测。根据计算与监测结果得到:(1)掌子面压力越大,既有隧道沉降越小,运营隧道左线仰拱沉降最大,仰拱最大沉降范围为3.4~3.7 mm;新建隧道左线线路中线所对应的地表最大沉降范围在1.9~2.1 mm之间。(2)注浆压力越大,既有隧道沉降越小,左线拱顶最大沉降范围在2. 6~3. 6 mm;新建隧道左线线路中线所对应的地表最大沉降范围在1~2. 1 mm。(3)盾构隧道在下穿运营地铁1号线过程中,邻近运营隧道拱顶最大沉降范围在2~3.5 mm,远小于10 mm,可确保运营隧道安全。(4)采用选取的注浆压力0. 3~0. 36 MPa与土仓压力0. 1~0. 13 MPa下施工,盾构隧道穿过运营隧道后,运营隧道中股道沉降最大值为0.5 mm,轨道沉降值小于10 mm,符合要求,运营隧道安全。最后,提出了相应施工对策:在盾构下穿既有隧道施工时,应减少超挖、适当选取盾构施工参数、盾构快速通过近接区和实时监测反馈施工。  相似文献   

14.
研究目的:为研究双线盾构下穿时既有地铁盾构隧道的沉降规律及控制措施,以北京地铁14号线隧道近距下穿地铁15号线隧道工程为依托,通过对既有隧道沉降的数值模拟,结合现场监测数据及盾构施工参数的分析,阐明既有隧道的沉降规律,总结控制沉降的盾构施工参数经验,验证沉降控制措施的有效性。研究结论:(1)既有隧道的沉降始于盾构刀盘距既有隧道1.5~2.0倍洞径处,在既有隧道前后1.1~1.3倍洞径范围变化最大,但受先后施工的二次扰动影响并不明显;(2)盾构掘进速度保持60~80 mm/min,合理且较高的顶推力、土仓压力、注浆量,可确保在快速通过穿越区域的同时抑制既有隧道的沉降;(3)通过注入双液浆、克泥效浆液对土层进行加固改良,设置聚氨酯隔离环,可减小既有隧道的后期沉降;(4)本研究成果可为盾构穿越施工影响下既有隧道的沉降控制提供借鉴。  相似文献   

15.
地铁隧道盾构施工参数对地表沉降影响的试验研究   总被引:2,自引:0,他引:2  
以南京地铁2号线某区间隧道为背景,研究了盾构法施工中的盾构施工参数(包括推进力、工作面土压力、刀盘扭矩等)对地表沉降的影响,通过对现场监测结果的分析,总结了地表沉降规律,对后续工程施工具有指导意义。  相似文献   

16.
随着我国隧道建设的不断推进,盾构法越来越多地应用于隧道施工,而盾构选型合适与否则是盾构施工成败的关键因素之一。针对南昌市轨道交通3号线工程土建施工07合同段国威路站~青山湖西站盾构区间的盾构隧道参数和工程水文地质条件,结合工程重难点对盾构机的设计要求,分析了盾构机刀盘、刀具对上软下硬地层的适应性,并对盾构机渣土改良系统、同步注浆系统和螺旋输送机提出了优化建议和意见,总结了上软下硬地层的盾构机选型方案,对今后遇到同类工程盾构施工具有借鉴和指导作用。  相似文献   

17.
黄土地区地铁盾构下穿铁路变形控制技术   总被引:1,自引:0,他引:1  
研究目的:黄土地区某城市地铁2号线盾构施工下穿既有陇海铁路线是一个盾构施工中的I级风险源,为保证地铁盾构施工安全下穿陇海线路,开展了盾构施工穿越既有铁路的变形控制技术研究,以为盾构安全施工提供技术支撑。研究结论:(1)黄土地区地铁盾构下穿既有陇海线路的地表沉降规律:不采取控制措施盾构施工时,路基右线隧道轴线正上方的沉降量为20.48 mm,左线隧道轴线正上方的沉降量为12.85 mm,左右线隧道的轴线上的沉降量均超出了沉降允许值;采取严格控制土压力、盾构匀速通过、严格控制注浆量、减少盾构推进方向的改变等减小地铁盾构下穿既有铁路施工风险的措施盾构施工时,右线隧道轴线正上方的沉降量为5.44 mm,左线隧道轴线上方的沉降量为4.95 mm,均小于变形允许值。(2)FLAC计算预测的变形规律与实际值基本一致,地表和铁路路基的变形量在允许范围内;减小地铁盾构下穿既有铁路施工风险的措施合理有效。(3)该研究成果可应用于黄土地区地铁盾构下穿铁路施工变形控制。  相似文献   

18.
成都地铁5号线为满足车辆调度需求,在九兴大道站小里程端采用左线盾构隧道与右线大断面浅埋暗挖隧道的双线并行布设方案,双洞净距2.9m。本文以该超小净距隧道为背景,采用数值模拟方法对隧道开挖时地表沉降规律及夹层土体应力状况进行了分析。结果表明,无论何种开挖次序,先行隧道的开挖均会导致后行洞开挖引起的地表沉降曲线向先行洞偏移并有所增大;由于左线小断面盾构隧道施工扰动理论上较小,因此先施工右线大断面浅埋暗挖隧道后再进行左线盾构隧道的施工顺序更为合理;先浅埋暗挖后盾构隧道施工造成的地表沉降值在两洞中间区域略小于先盾构后浅埋暗挖隧道施工;双线隧道通过后地表沉降槽呈现出"U"形状态,盾构隧道的通过造成地表沉降影响范围增加了约1/4;双线开挖过程中中间土体在浅埋暗挖隧道一侧受施工的影响更为明显,应重点关注。  相似文献   

19.
针对成都地铁7号线2标盾构隧道工程施工过程中,因多次穿越浅基民房片区而可能出现的地面沉降和房屋坍塌问题,基于盾构前期施工过程中的土仓压力、刀盘扭矩与转速、地表沉降等关键参数统计结果,从建筑物加固、盾构下穿建筑物期间的掘进参数控制、滞后沉降控制等方面进行技术分析,并提出了针对性的控制措施。通过对后期施工现场建筑物变形量测分析可知:因盾构掘进引起浅基民房沉降值最大为2.2 mm,盾构隧道穿越后基本稳定在2 mm左右,均控制在目标范围内。  相似文献   

20.
通过分析盾构机刀盘开口率、穿越土层性质、隧道线型和地面超载4个因素对EPB盾构机土舱压力设定的影响,提出土舱压力的土性修正系数和曲线修正系数,建立既能体现土层性质又能反映隧道线型的土舱压力设定方法。基于杭州地铁盾构隧道施工的监测数据,以地表变形为筛选指标析出典型区段土舱压力的原位实测数据,并以此对开口率为36%的辐板式盾构机和开口率为65%的辐条式盾构机在淤泥质粉质黏土中分别以直线和曲线掘进时的修正系数进行反分析,得出相应的土性修正系数和曲线修正系数,并通过实例验证了修正系数的取值。结果表明:在给定土层中掘进时,开口率为36%的辐板式盾构机与开口率为65%的辐条式盾构机相比,前者挤土效应更明显,在曲线掘进时土舱压力的增量也较大;而后者的土舱压力更稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号