首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
结合处于高烈度地震地区的某(48+4×80+48)m刚构连续梁桥的工程实例,分析表明对高烈度区的长联多跨刚构连续梁桥进行常规抗震设计往往无法达到抗震设防目标。应用双曲面球型减隔震支座进行减震设计,可以有效地降低抗震设计控制截面的内力,使结构设计更容易满足抗震规范的要求。同时分析了双曲面球型减隔震支座的两个主要参数摩擦系数和球心距对刚构墩减震效果的影响。对于同一个球心距,刚构墩墩底的顺桥向弯矩响应、墩顶的顺桥向位移响应随摩擦因数的增大而减小,横桥向弯矩响应、横桥向位移响应随摩擦因数的增大而增大;对于同一个摩擦因数,随着球心距的增加,刚构墩墩底的顺桥向、横桥向弯矩响应以及墩顶的横桥向位移响应均呈现减小趋势,而刚构墩墩顶的顺桥向位移响应呈现先减小后增大的趋势。  相似文献   

2.
为分析混凝土收缩荷载对空心墩墩顶实体段应力的影响,以某单线铁路空心墩为例,对墩顶实体段进行结构有限元建模分析。分析表明:仅考虑竖向荷载(含动力系数)时,最大拉、压应力出现在顺桥向;考虑混凝土收缩荷载后,最大拉、压应力出现在横桥向,且拉应力数值增加明显,尤其是横桥向拉应力增加2~3倍,混凝土收缩荷载对墩顶实体段应力影响很大,设计配筋时应予以考虑。  相似文献   

3.
以某(84+160+84)m连续刚构桥为背景,建立考虑主梁-桥墩-桩基-土层的有限元模型,对桥墩高度、桥墩截面、双肢薄壁墩间距等影响因素分析,同时也对典型截面的内力与位移计算分析。研究结果表明:在桥墩高度为60~100 m范围内,中墩顺桥向剪力基本稳定,不再随桥墩高度的增加而递减。桥墩高度为100 m时梁体中跨跨中截面顺桥向与横桥向位移达到139.1和97.5 mm;从抗震角度分析,圆形截面桥墩对位移影响较大,空心矩形桥墩截面与实心矩形桥墩截面形式对墩顶内力的影响不大,故空心墩较节约材料;对于文中连续刚构桥分析,双肢薄壁墩间距为8 m时,梁体位移与桥墩墩顶内力均达到最小,合理的双肢薄壁墩间距能有效降低墩顶受力与梁体位移,能有效提高地震作用下的安全系数。  相似文献   

4.
研究目的:横桥向地震作用下,斜拉桥的过渡墩是抗震设计的薄弱环节,有必要研究斜拉桥过渡墩处合理的横桥向约束体系。以厦漳跨海大桥南汊主桥为工程背景,从提高过渡墩横桥向抗震性能的角度出发,研究3种横桥向约束体系(墩梁主从、墩梁自由、墩顶设置限位挡块)对斜拉桥横桥向抗震性能的影响。研究结论:采用墩梁主从体系会放大过渡墩及其基础的地震响应;采用墩梁自由体系虽然可以减小过渡墩及其基础的地震响应,但会造成墩梁横桥向相对位移过大;采用限位挡块体系可以有效减小过渡墩的地震响应,合理的挡块初始间隙可以通过参数分析得到。  相似文献   

5.
结合大跨、高墩、长联曲线铁路梁桥的工程实例,利用大型通用有限元软件ANSYS,采用反应谱的分析方法,给出了该桥在不同的曲线半径、桥墩墩高、墩梁约束方式下的自振频率和振型,分别按纵桥向和横桥向的激励方式,分析了中跨跨中位移,墩顶位移及墩底弯矩随设计参数变化的规律。结果表明:自振频率受桥墩墩高和墩梁连接方式的影响较大,受曲线半径的影响较小;曲线半径在一定范围内变化时,地震响应变化较小;在纵向反应谱的作用下,桥墩墩高的改变对地震响应的变化规律比较复杂,在横向反应谱的作用下,地震响应有一定的变化规律;墩梁约束方式为约束7的地震响应最小,但综合考虑温度、制动力学因素,应该是原设计约束5最优。  相似文献   

6.
基于有限元模型修正理论,以桥墩横桥向整体振动、横桥向局部振动和顺桥向局部振动模态的不同组合为输入,以墩身刚度、基底约束刚度和支座刚度为损伤识别参数,用模态频率残差和模态振型残差构造目标函数,实现对桥墩损伤的定位和定量评估。对评估方法的验证结果表明:利用由墩顶、墩中和墩底3个点响应分析得到的模态参数即可实现对桥墩损伤的评估;以桥墩的2种或3种模态为输入时,可同时识别墩身、基础和支座的损伤;对于大部分仅可测得横桥向整体振动模态的桥墩而言,利用该模态参数仍可对桥墩墩身和基础的损伤状态进行准确评估;该桥墩损伤评估方法的抗噪能力强,可收敛到全局最优解。  相似文献   

7.
黄陵-韩城-侯马铁路纵目沟特大桥主桥采用一联(78+2×136+78)m连续刚构,5号主墩高达到105 m,采用新型柱板式空心墩,本结构在国内尚属首例,而且由于高墩大跨连续刚构桥在施工阶段的抗风能力较弱,因此有必要对风致响应进行研究。通过CFD计算分析,确定了主梁及桥墩的三分力系数取值,再采用1∶75的缩尺模型风洞试验,对其抗风性能进行了研究。结果表明:新型柱板式空心墩在设计孔径最大双悬臂状态下,墩顶横桥向最大位移均方根为12.52 mm,墩顶顺桥向最大位移均方根为8.31 mm,风荷载作用下桥墩钢筋应力98 MPa。各项指标均满足规范要求。  相似文献   

8.
为分析反射隔热涂料对无砟轨道温度场的影响,对现场铺设的CRTSⅡ型轨道板进行长期温度监测。通过试验数据分析,确定CRTSⅡ型轨道板的最大正温度梯度,利用热传导解析式可推算不同厚度轨道板的温度梯度修正系数。以CRTSⅠ型板式无砟轨道为例,建立实体有限元模型,分析反射隔热涂料对轨道板翘曲、树脂填充层受力和变形的影响。结果表明:涂刷反射隔热涂料能够在一定程度上减小太阳辐射对轨道板温度梯度和日温度变化的影响,有效控制轨道板的翘曲、树脂填充层的受力和变形,轨道板最大翘曲应力降低25%,板中最大上拱量减小56%,板角最大下沉量减少25%,树脂填充层所受最大压应力和最大压缩变形分别减少33.6%,33.3%。  相似文献   

9.
刚构体系多塔矮塔斜拉桥可通过在主梁合龙前施加顶推力使桥墩向边跨侧预偏,以减小主梁收缩徐变对桥墩受力的影响。将成桥状态下的桥墩应力作为目标函数,设置约束方程控制合龙施工时的桥墩应力,利用多目标线性规划方法确定合龙顶推力。计算结果表明,采用迭代计算可考虑顶推力对混凝土收缩徐变的影响,得到的合龙顶推力可使运营阶段桥墩截面拉应力最小;合龙顶推力将改变结构的应力状态,其对主梁应力状态的影响很小,但对桥墩的应力状态改变较大,由此而产生的徐变效应不能忽略;墩底约束刚度对最优顶推力的确定有一定影响,在实际顶推合龙前应进行试顶推以修正模型的墩底约束刚度。  相似文献   

10.
以大准铁路增二线某大跨度连续刚构桥为工程背景,利用Midas/Civil建立有限元模型,比较单薄壁实心墩、独柱圆形实心墩、双薄壁实心墩三种桥墩对连续刚构桥抗震性能的影响。计算结果表明:单薄壁实心墩、独柱圆形实心墩、双薄壁实心墩对应结构自振频率依次增大,单薄壁实心墩与独柱圆形实心墩以桥面振动为主,而双薄壁实心墩以桥墩弯曲为主。同时,在横桥向地震波作用下,独柱圆形实心墩桥梁墩顶位移与中跨跨中位移峰值最小,双薄壁实心墩桥梁墩底剪力峰值最小;在纵桥向地震波作用下,双薄壁实心墩桥梁墩底剪力、墩顶位移与中跨跨中位移峰值最大,独柱圆形实心墩峰值最小。  相似文献   

11.
急流对桥梁冲击作用不可忽视,且现有规范对急流状态下桥墩的冲击作用考虑不足,未考虑急流对墩的侧向作用力,可能严重低估急流作用对桥梁结构的影响。现以某大跨度连续刚构桥为研究对象,建立刚构桥三维有限元模型,系统地考虑急流对桥墩顺流向和横流向(侧向)的冲击作用,研究不同流速和水深对大跨度连续刚构桥动力响应影响,并与港口规范计算结果进行对比。分析结果表明:在急流状态下,单墩两侧的压强呈非对称分布,构成横流向的瞬时压强差,造成显著的瞬时横流向力,在结构设计中不可忽视;水深在H/2及以上时,桥梁受急流冲击效果急剧增长,水流速度对桥墩最大位移和最大应力影响较大,此时应考虑侧向力对桥墩的影响;随着水深和流速增大,港口规范与数值模拟响应差值逐渐增大,墩顶位移最大可达1.6 cm,墩底应力最大可达4.8 MPa,在急流状态下,数值模拟结果更为保守。  相似文献   

12.
地基柔性效应对铁路连续梁桥弹塑性地震反应的影响   总被引:2,自引:2,他引:0  
以某高速铁路大跨连续梁桥固定墩纵桥向的弹塑性地震反应为研究对象,建立考虑地基柔性约束效应的单墩动力计算模型,分析地基柔性效应对桥墩动力特性及弹塑性地震反应的影响规律。结果表明:地基比例系数m值的改变对桥墩的1阶自振频率影响较明显;随着地基比例系数m值的降低,墩顶位移及基底位移逐渐增加;地基越软,桥墩的弹塑性地震反应有增大的趋势。为了更加合理的描述桥墩的塑性状态,建议对软土场地桩基础钢筋混凝土桥墩进行延性抗震设计时,优选墩底曲率延性指标进行评价。  相似文献   

13.
为科学合理地确定不设钢轨伸缩调节器的桥梁温度跨度,通过建立线桥墩一体化计算模型,研究各种因素对有砟桥上无缝线路最大温度跨度的影响。研究结果表明:钢轨顶面垂磨增大,最大温度跨度逐渐减小;墩顶纵向水平位移增大,最大温度跨度与墩顶位移近似成等比例减少;制动力对钢轨升温幅度较大时的最大温度跨度有一定影响;大机维修所确定的温度跨度要比大机清筛的小;为减缓地震对桥梁纵移、横移的影响,高速铁路桥梁设计中应采用防落梁装置。综合分析后,考虑了轨温变化幅度、墩高2个影响因素,得出了桥梁温度跨度极值的建议值,如最大墩高小于30m,轨温变化幅度分别为30,40和50℃时,温度跨度极值分别建议为320,300和280m。  相似文献   

14.
为研究反射隔热涂料对无砟轨道温度及温度应力的降低效果,建立考虑气温、太阳辐射和风速的无砟轨道温度场计算模型,并开展试验对其进行验证,分析反射隔热型涂料对成都地区双块式轨道温度的影响,分别计算使用该涂料前后单元式和纵连式轨道的温度应力,并探讨不同风速下该涂料的效果。研究结果表明:建立的无砟轨道温度场模型是准确和有效的;成都地区使用该类型涂料道床板温度梯度能够降低约50%,但对轨道整体温度影响不大;使用涂料后单元式无砟轨道翘曲应力降低较为显著;风速超过4级后反射隔热涂料降低轨道翘曲应力的效果一般。  相似文献   

15.
为了研究摩擦摆支座栓钉抗力和支座阻尼对桥梁结构地震响应的影响,以韩江特大桥主桥为研究对象,应用ANSYS建立全桥模型,采用非线性时程分析法对比分析了不同支座参数下该主桥的地震响应。研究结果表明:摩擦摆支座栓钉抗力系数较合理的取值范围为0.04~0.05,在实际应用中还应考虑栓钉抗力对正常荷载作用下桥梁结构变形等的影响;考虑支座阻尼后各桥墩的支座纵桥向最大水平位移均有一定程度减小,还会减小除11~#桥墩外其余桥墩支座纵桥向最大水平剪力;考虑支座阻尼后会增加9~#,11~#,13~#,15~#桥墩墩底纵桥向最大弯矩,而10~#,12~#,14~#桥墩墩底纵桥向最大弯矩有所减小。  相似文献   

16.
余鹏  杨喜文 《铁道勘察》2024,(1):117-123
多跨长联连续梁结构存在固定墩地震力大、延性部位震后不易恢复等问题,在高烈度震区抗震设计存在困难。为了解决高速铁路多跨长联矮塔斜拉桥的抗震设计问题,以某(65.65+8×110+65.65) m单索面预应力混凝土矮塔斜拉桥为研究对象,采用非线性时程积分方法,对单固定墩、刚构连续梁和摩擦摆支座隔震3种不同的抗震体系方案进行分析比选。研究结果表明,采用摩擦摆支座隔震体系方案优势明显,在地震作用下,与单固墩体系相比,桥墩横桥向墩底弯矩普遍减小70%以上,固定墩纵桥向墩底弯矩减小约80%;进一步通过摩擦摆隔震支座参数分析,确定了合适的支座参数,获得较好的支座变形量、墩顶剪力,减隔震效果明显。因此,在桥墩剪跨比小、下部结构刚度大的情况下,设置摩擦摆隔震支座后,可显著减小地震时下部结构的地震响应,使各个桥墩受力均匀,同时通过合理的支座设计可满足大震位移需求,并具有足够的自复位能力。  相似文献   

17.
高墩大跨刚构桥桥墩若出现工后沉降,桥墩纵向和横向的沉降值存在差异,将导致桥墩出现纵横向偏转。针对桥墩偏转对无缝线路的影响,结合某一高墩大跨刚构桥上无缝线路,利用有限元方法,建立空间线—桥—墩—体化模型,分析桥墩纵向、横向偏转对桥上无缝线路的影响。计算结果表明:随着桥墩纵向偏转角度的增加,钢轨中产生的附加力近似呈线性增加;当桥墩纵向偏转与温度荷载耦合时,桥墩纵向偏转所引起的钢轨纵向力变化幅度不大。桥墩的横向偏转主要引起轨道长波不平顺,钢轨位移及不平顺随着桥墩的横向偏转角的增加而增加,并且当桥墩横向偏转角较大时,整个桥上无缝线路会出现多处不平顺超限,超限位置主要分布在左、右侧桥台及两个梁体接缝处。  相似文献   

18.
以津滨轻轨桥墩托换工程为研究对象,考虑桩-土共同作用,运用ANSYS分析托换前与托换后结构的自振特性,并采用反应谱法和时程分析法计算托换前及托换后桥梁结构的地震反应。结果表明,托换后的桥梁结构基本周期比托换前减小了,地震荷载作用下,桥梁墩底特别是托换桥墩底部的最大剪力值和弯矩值较托换前大幅增加,而墩顶位移最大值则大幅减小,说明托换使得桥梁结构的整体刚度增加了,托换后的桥梁结构体系具有较好的抗震性能。  相似文献   

19.
考虑日照条件下混凝土箱梁热流密度边界的时变特征,建立高速铁路简支箱梁温度场参数化仿真分析模型,研究高速铁路标准跨径简支箱梁温差的分布特征及控制措施。结果表明:箱梁最大正、负温差均沿厚度方向呈负指数分布,最大正温差在数值上大于负温差;随着大气透明度系数的提高,箱梁顶板和底板的正、负温差及腹板的负温差增大,而腹板正温差随之减小;箱梁温差与混凝土短波辐射吸收率成正相关,涂刷浅色涂料和提高混凝土表面光洁度可有效减小箱梁温差;昼夜气温差对箱梁温差分布影响显著,日温差越大箱梁各个部位温差越大;增大梁顶覆盖层厚度可一定程度上降低箱梁顶板温差。  相似文献   

20.
为研究考虑加载历史的桥梁-多线轨道系统受力特性,通过推导考虑加载历史的线路纵向阻力迭代公式并以某(77+3×156.8+77) m系杆拱连续梁桥为例,建立考虑钢管混凝土拱、吊杆、梁体、桥墩、桩基、多线轨道的大跨度系杆拱连续梁桥一体化有限元模型,分析加载历史对系杆拱连续梁桥-轨道系统受力影响及结构检算结果。结果表明:代数求和算法计算钢轨应力峰值偏大61.9%,墩顶水平力偏大74.0%,考虑温度效应须同时对钢轨、梁体和拱施加温度荷载;挠曲工况下双线同向加载时墩顶水平力为1 058.2 kN,双线对向加载时墩顶扭矩为4 193.6 kN·m;计算温度制挠力时,代数求和算法计算钢轨应力较荷载步法偏大7%,墩顶水平力偏大8%~27%,设计不经济;代数求和算法计算墩顶扭矩与荷载步法最大偏差可达51.3%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号