首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
级配钢纤维活性粉末混凝土的动态拉伸性能的试验研究   总被引:1,自引:0,他引:1  
采用分离式Hopkinson压杆(SHPB)对直径为70 mm的圆柱体试件的动态拉伸性能进行研究,得到了不同应变率下的混凝土劈裂拉伸强度和拉伸应力-时间曲线,并与静态劈裂拉伸强度进行了对比。根据试验结果,讨论了含不同种类钢纤维的活性粉末混凝土的动态拉伸性能,以及3种钢纤维级配下的钢纤维活性粉末混凝土的动态拉伸性能;总结了级配钢纤维活性粉末混凝土的应变率效应,以及影响钢纤维混凝土动态拉伸性能的因素。  相似文献   

2.
为研究普通混凝土材料的动态冲击力学性能,利用改进的落锤冲击试验装置,对C30混凝土圆柱体进行低速冲击试验。为降低落锤冲击惯性效应并获得稳定的加载速率,试验采用不同厚度的橡胶或海绵作为波形整形材料;采用20 mm厚橡胶时可消除惯性力影响,延长加载时间,使试件纵向应力趋于均匀分布,并实现恒定速率加载。试验结果表明:冲击荷载下混凝土破坏形态与静载下相同,动态增大系数(DIF)、极限应变与吸收能量随应变率增加而增加,在本文试验参数范围内应变率对混凝土应力-应变曲线形状影响较小。对已有混凝土动态力学性能试验结果进行统计和对比,验证了CEB2010规范公式偏于保守地描述了DIF与应变率的关系,且本文的研究结果填补了应变率10-1/s~100/s范围内试验数据。  相似文献   

3.
为研究刨削式吸能结构用45号钢在不同应变率和不同温度下的力学行为,对该材料进行实验与本构模型研究。开展在不同应变率下(10-4 s-1~1 500 s-1)和不同温度下(300~600℃)的拉伸实验。研究结果表明:刨削式吸能结构用45号钢为应变率敏感型材料。随着应变率的提高,材料屈服强度和极限强度有着明显提高,而温度升高则会使材料软化降低材料强度。基于实验结果,建立Johnson-Cook(J-C)本构模型来描述材料流变应力与应变率和温度之间的关系,并对温度软化参数进行线性修正,对率敏感性参数进行了二元二次回归修正。误差分析表明修正后的J-C本构模型在预测不同应变率下材料的力学特性时有更高的精确度。  相似文献   

4.
为研究混凝土材料在低速冲击下的动力效应,对一组应变率在100/s~101/s范围内的混凝土圆柱体落锤轴向冲击试验进行数值模拟研究。以自研发混凝土动态应力传感器实测应力-应变曲线为基准,对混凝土连续面盖帽模型(CSCM模型)关键参数进行参数优选,计算得到不同冲击速度下的冲击力时程、试件应力、试件内能、侵蚀内能、应变率及动力增强系数(DIF)的变化规律,获取试件损伤破坏云图。研究结果表明:试件应力、应变率和试件内能与冲击速度大致呈线性关系,混凝土材料动力增强系数与应变率大致呈抛物线关系。对比计算损伤破坏云图与试件破坏的高速摄影照片可知,经过参数优选后的CSCM模型,在低速冲击范围内有很好的计算精度,模拟破坏形态与试验结果吻合良好。  相似文献   

5.
Q355GNHD高耐候钢是先进轨道车辆车身的常用材料,其动态条件下的塑性本构模型对车身结构受力数值仿真至关重要。文章采用MTS 647 Hydraulic Wedge Grip和AutoCAE (HRST-I)高速试验机对Q355GNHD高耐候钢开展准静态、动态拉伸力学性能试验,获取了该型材料在0.001~500s-1应变率下的应力应变曲线;通过对该高耐候钢在应变率效应下受载变形规律的分析,确定了应变率加载效应;构建了应变率相关的Johnson-Cook硬化模型,确定了本构表征参数;最后运用ABAQUS平台,验证了模型的正确性。  相似文献   

6.
针对应用裂纹尖端张开位移(CTOD)评判指标评定桥梁钢和焊接接头的断裂韧性时缺少依据的问题,提出将CTOD试样的单边疲劳预裂纹作为缺陷,运用BS7910《金属结构缺陷可接受性评定方法指南》的失效评定曲线对桥梁钢的CTOD值进行评定。具体方法是根据对应桥梁钢CTOD试验温度下的单轴拉伸应力—应变曲线,得到桥梁钢真应力—真应变曲线,然后按照BS7910的2B级评定方法得到桥梁钢的CTOD的失效评定曲线,最后根据桥梁钢的CTOD值在失效评定曲线图上所处的位置对其合格性进行评定。应用该方法对某大跨度斜拉桥用50,60和100mm厚的S420ML桥梁钢进行评定,结果表明,这3种厚度的S420ML桥梁钢的CTOD值均在失效评定曲线图中可接受区域内,它们的断裂韧度均为合格。  相似文献   

7.
试验用贝氏体钢轨钢连续冷却曲线的测定及组织特征   总被引:7,自引:0,他引:7  
采用膨胀法,辅以金相法、硬度法测定了2种成分试验贝氏体钢轨钢的连续冷却转变曲线,对不同冷速下获得的金相组织进行观测,同时分析讨论了成分的选择及合金元素的作用。试验表明,1号钢冷却速度在0.3~2℃/s范围内,2号钢冷却速度在0.3~3℃/s范围内,贝氏体钢中得到以贝氏体为主的组织;1号钢、2号钢最佳冷速范围均为0.8~1.5℃/s;当冷速大于4℃/s时,两组钢将得到以板条马氏体为主的组织。  相似文献   

8.
研究目的:相较于城市轨道交通,市域铁路列车运行速度更快、轴重更大,截至目前,国内市域铁路在时速160 km没有采用钢弹簧浮置板轨道的先例,也没有对其在市域铁路运营条件下的适应性开展过系统研究。为设计研发适用于市域铁路的钢弹簧浮置板轨道,本文通过开展足尺模型的疲劳试验,分析疲劳前后力学性能变化,进而得到纵向连接式钢弹簧浮置板轨道静刚度及应力应变的变化规律。研究结论:(1)疲劳后浮置板垂向位移整体呈下降趋势,200万次疲劳后其位移平均值减小2.90%,500万次疲劳后其位移平均值减小4.78%;(2)疲劳后浮置板静刚度呈增大趋势,疲劳前、200万次疲劳后和500万次疲劳后,浮置板静刚度分别为185.02 kN/mm、189.11 kN/mm、192.49 kN/mm;(3)浮置板表面中线上应变测点位置的应变在疲劳试验后呈现增大趋势,200万次及500万次疲劳试验后其最大应变值较疲劳前分别增大19.21%和17.70%;(4)浮置板表面边线上应变测点位置的应变在疲劳试验后呈现减小趋势,200万次及500万次疲劳试验后的最大应变值较疲劳前分别减小2.16%和3.11%;(5)500万次疲劳后板...  相似文献   

9.
锈蚀钢筋在承受疲劳荷载作用后,其应力-应变关系相较于静力荷载作用下的应力-应变关系出现了明显的区别。为探讨准确的锈蚀钢筋疲劳加载后应力-应变关系,开展不同锈蚀率钢筋的静力拉伸试验和疲劳加载后静力拉伸试验。试验结果表明:锈蚀钢筋静力拉伸断裂,断面不规则,有颈缩现象,屈服平台随锈蚀率的增加而缩短直至完全融入强化段。锈蚀钢筋承受疲劳荷载后会产生残余变形,残余变形按较快增长、稳定增长、快速增长3阶段规律发展。依据试验数据拟合锈蚀钢筋疲劳残余应变演化方程,定义以残余应变表述的锈蚀钢筋损伤变量。建立疲劳荷载作用后锈蚀钢筋静力拉伸本构关系模型,成果可为锈损结构耐久性、剩余承载力、疲劳性能评估提供试验参考。  相似文献   

10.
对应变硬化水泥基材料(PVA-SHCC)试件进行拉伸试验,使试件达到预定的应力及应变后保持不变,静置一段时间后在持续拉伸应力环境下进行抗水渗透性试验和抗氯离子渗透性试验,以测定其在不同应力、应变水平下的抗水和抗氯离子渗透性能。结果表明:试件中毛细吸水量、毛细吸水系数、氯离子含量,均随着应力和应变的提高而增大,当应变达到极限应变的2%时,试件的毛细吸水系数是试件未受荷时的5.5倍。  相似文献   

11.
为高速车轮服役性能评价及失效分析提供依据,在-60~400℃温度及6.67×10-4~3 782s-1应变速率范围内对高速车轮钢进行拉伸及压缩试验,测量其屈服应力、抗拉强度、断面收缩率、伸长率、应变硬化指数、应变硬化系数等材料力学参量,研究材料力学参量随温度和应变速率的变化。结果表明:在试验范围内高速车轮钢的屈服应力、抗拉强度随应变速率常用对数的升高而线性增加,随温度的升高而基本呈线性降低;屈服应力在试验温度上升范围内下降了225 MPa,在试验应变速率增加范围内上升了270 MPa,而断面收缩率和伸长率则随温度的升高而增加、随应变速率的增加而略有降低;应变硬化指数基本不随温度的变化而变化,但随加载速率的增加而降低;应变硬化系数随温度和应变速率的增加而降低;温度及加载速率对高速车轮钢材料塑性本构关系的定量影响可通过包含温度和应变速率参数的Hollomon方程描述。  相似文献   

12.
TMCP控扎Q460E钢在电力机车车体上首次使用,对Q460E钢的焊接性及焊接材料选用进行了分析,并通过对不同焊接工艺参数下的弯曲、拉伸、冲击、硬度试验及接头显微组织分析,对Q460E钢的焊接接头性能及焊接工艺进行了确认,试验取得满意的效果。  相似文献   

13.
通过阐述平面应变断裂韧度的试验原理,采用3点弯曲试样和紧凑拉伸试样,以25 t疲劳试验机为例对不同试样尺寸下对应的试验力进行估算,得出试验尺寸与试验力的关系,并分析在25 t疲劳试验机上进行试验的可行性。同时对比了同样厚度的3点弯曲试样和紧凑拉伸试样试验力的大小,为选择试样种类提供了依据。  相似文献   

14.
为了研究膨胀式防爬器的吸能特性,对不同厚度膨胀管的材料性能进行分析,研究了不同约束方式对静压仿真稳定段均值力的影响。通过仿真与试验对比,得到2种轮廓加压锥与膨胀管配合关系下的摩擦因数;进行不同应变率下的材料试验,研究了不同硬化模型对膨胀管高速冲击稳定段均值力的影响,并基于SHS硬化模型对不同冲击速度下的稳定段均值力进行分析。研究结果表明:不同厚度的膨胀管材料性能差异明显,不同边界约束方式对静压仿真稳定段均值力改变明显;不同轮廓加压锥与膨胀管配合关系下的摩擦因数不同,稳定段均值力均与摩擦因数呈正相关;采用不同硬化模型仿真得到的高速冲击稳定段均值力基本相同;使用SHS硬化模型仿真得到的不同冲击速度下的稳定段均值力基本相同,仅在碰撞初始时表现出应变率效应;采用1/4简化模型能够在保证计算精度的同时显著提高计算效率。  相似文献   

15.
高温后钢管高性能混凝土轴压短柱力学性能研究   总被引:7,自引:0,他引:7  
通过48根高温冷却后钢管高性能混凝土(C80)短柱的试验研究,探讨了火灾温度、恒温持续时间、含钢率等因素对高温后钢管高性能混凝土短柱极限强度、峰值应变、平台强度等的影响,并对构件高温后的工作机理进行了较深入的分析。试验表明,随着火灾温度的升高和恒温时间的增加,高温后钢管高性能混凝土短柱极限承载力整体上呈降低趋势,且温度高于500℃后,其下降速度更快,而在其他条件相同时,高温后钢管高性能混凝土短柱的极限承载力随含钢率增加略有提高。根据试验结果,建立了高温后钢管高性能混凝土组合材料应力 应变关系曲线计算公式和极限强度、峰值应变、平台强度、极限承载力等经验计算公式,其计算结果与实测结果吻合较好。  相似文献   

16.
本研究利用铁道车辆用5083-0、6N01-T5、7N01-T5 3种铝材板料制作了母材和焊缝试样,并进行拉伸和压缩试验。按照试验速度4 m/s以下使用气、油压试验装置;试验速度4 m/s以上时使用以One Bar法为原理的试验装置。调查了3种铝材和焊缝的动态材料特性,尤其是与变形速度相关的动强度特性。  相似文献   

17.
S500MC钢板斜Y型坡口焊接试验分析   总被引:1,自引:1,他引:0  
S500MC材料是随着引进法国ALSTOM公司的相关技术而引进来的新材料,由于其高强度、高韧性、低含碳量等特点,使它成为适合机车转向架构架轻量化、高强度设计要求的理想材料。本文通过2种不同填充材料的斜Y型坡口试验对其冷裂性能进行检测。试验结果表明。试验选用的焊接填充材料和焊接工艺合理,其可焊接性良好,冷裂敏感性低。  相似文献   

18.
为掌握高速铁路CRTSⅢ型板式无砟轨道充填层自密实混凝土(SCC)在高速列车等动载作用下的力学特性,采用Ф75mm分离式霍普金森压杆(SHPB)试验方法,研究充填层SCC在10~100 s~(-1)条件下的动态力学性能,并基于应变等价性假说和统计损伤理论建立充填层SCC动态本构模型。研究结果表明:随着应变率增加,SCC的破碎程度增大;SCC的峰值强度、峰值应变和比能量吸收均随应变率的增大而增大,表现出明显的应变率敏感性,且其应变率敏感性大于普通混凝土;建立的动态本构模型可用来描述SCC在相应应变率下的应力应变关系。  相似文献   

19.
为采用线弹性断裂力学方法对既有铁路钢桥进行疲劳评估,利用紧凑拉伸试样、基于柔度法的测量手段,对6.1,10.0和23.5mm厚的我国应用最广泛的Q345qD桥梁钢进行疲劳裂纹扩展速率试验,分别采用单试件数据点和成组(相同材料、厚度和应力比)数据点拟合,得到不同厚度、不同应力比下试件的疲劳裂纹扩展速率参数。试验结果表明:在通常的应力强度因子幅值范围(10~70 MPa·m1/2)内,基于单试件数据点拟合参数得到的疲劳裂纹扩展速率明显高于基于成组数据点拟合参数得到的裂纹扩展速率;Q345qD桥梁钢的疲劳裂纹扩展速率随应力比增加而增加,当应力比从0.1增加到0.5时,本批次钢材的疲劳裂纹扩展速率增幅为7%~25%,但随板厚增加的变化并不显著;本批次Q345qD桥梁钢的疲劳裂纹扩展性能优于HPS485W和14MnNbq桥梁钢及BS7910标准中给出的通用钢材疲劳裂纹扩展性能。  相似文献   

20.
研究目的:HRB500钢筋是桥上纵连板式无砟轨道中的主要受力钢筋,其在服役期间的疲劳特性是工程界十分关注的问题。为研究桥上纵连板式无砟轨道HRB500钢筋的疲劳性能,本文首先进行HRB500钢筋的静力拉伸试验,在此基础上,对7种不同应力水平下HRB500钢筋进行对称拉压循环荷载下等幅疲劳试验。研究结论:(1)根据试验结果拟合得到了HRB500钢筋的S-N曲线;(2)依据相关规范对铁路工程结构物可靠度指标和纵向连接钢筋疲劳强度折减系数的相关规定,并参考英国BS 5400规范关于钢筋长寿命区S-N曲线的外推方法和由中值S-N曲线推导不同概率S-N曲线的相关规定,得到了可靠度指标4.2的适用于桥上纵连板式无砟轨道钢筋疲劳寿命预测的HRB500钢筋S-N曲线;(3)本研究成果可以为桥上纵连板式无砟轨道HRB500钢筋疲劳寿命预测模型的建立提供试验依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号