首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究目的:深埋硬岩顺层构造由于其分层特性和结构形式的特点决定了在这样的地质环境中开挖隧道,其围岩受力之后的变形和破坏具有一定的特殊性。本文以拟建某高铁黄草隧道为例,就深埋隧道顺层硬岩组合围岩在不同岩层倾角下的开挖损伤变形开展数值模拟分析评价,主要研究不同岩层倾角下的隧道围岩变形、围岩屈服渐进性及稳定性,并给出强度折减至极限状态时硬岩组合隧道围岩的变形破坏模式。研究结论:(1)随着岩层倾角的增大,顺层硬岩组合隧道主变形从岩层弯曲变形逐渐向顺层滑移变形转变,倾角增大至一定程度时( 75°),垂直层面局部位移相对较大,在滑移变形为主的基础上弯曲变形程度加大;(2)硬岩组合的开挖引起洞室周边一定范围内的围岩发生屈服,岩层倾角变化导致围岩屈服区范围大小发生改变,倾角为30°时屈服范围最大,以此为界减小或增大倾角,屈服区均表现为不同程度的减小趋势;(3)岩层倾角存在界限值,硬岩组合黄草隧道为40°,小于或大于该值稳定安全系数均减小,10°~75°区间内稳定安全系数变化幅度最高达17%;(4)强度折减条件下,围岩破坏模式略有变化,表现为:倾角≤30°时,垂直于层面方向的位移量和破坏范围大,围岩以层裂(弯曲折断)破坏模式为主;当倾角 60°时,顺层面方向破裂范围大,但垂直层面破坏优先启动;(5)本研究成果对促进该高铁的顺利建设和今后类似工程的建设有着理论指导意义和工程价值。  相似文献   

2.
研究目的:全风化红砂岩和砂质黄土互层地层在我国有较广泛的分布,其敏感脆弱的工程地质特性严重影响隧道工程建设。本文以蒙华铁路阳城隧道为依托工程进行拓展性研究,采用室内试验、数值模拟、现场监测等多种方式深入探讨岩层倾角对土砂互层地层隧道围岩稳定性的影响。研究结论:(1)随着岩层倾角增大,拱顶及左、右拱腰位移呈现互异的变化规律,且具有不同的变形机理;对于拱顶而言,45°为破坏模式转换临界,位移取得最小值43. 7 mm;根据左、右拱腰变形差异性,分为非对称变形缓慢发展区、非对称变形快速发展区、非对称变形稳定区、非对称变形弱化区和非对称变形二次发展区五个阶段;(2)拱顶及左、右拱肩处支护结构在不同地层倾角下均有较大主应力,且波动幅度较大,左、右拱肩处应力差值的变化对隧道结构会产生不同程度的影响,当倾角为60°时,两处主应力差值取得最大值1. 01 MPa;(3)随着岩层倾角变化,张拉塑性区和剪切塑性区存在不同的分布规律,实际工程中应做好相应抑变措施;(4)本研究结论可为不同岩层倾角产状下的土砂互层地区的隧道设计和施工提供借鉴。  相似文献   

3.
基于对顺层边坡稳定性影响因素的研究成果,从路堑边坡岩层走向与线路夹角、不同岩性岩层结构面综合内摩擦角、岩层倾角、岩层厚度等方面对地质勘察时顺层路堑边坡稳定性的初步判定方法进行探讨。结果表明:岩层走向与线路夹角是路堑边坡稳定性的首要判定条件;对高度不大于30 m的边坡,岩层结构面倾角大于其综合内摩擦角是判定路堑边坡稳定性的条件之一;岩层倾角在10°~85°时路堑边坡受到破坏,大于85°时破坏模式转变为倾倒破坏。对顺层路堑边坡稳定性进行初步判定后须经设计检算确定支挡防护措施。  相似文献   

4.
研究目的:在实际地质环境中,隧道开挖所表现出来的各种变形破坏都是各种因素综合影响的产物。但顺层构造由于其分层特性和结构形式的特点决定了在这样的地质环境中开挖隧道,其围岩受力之后的变形和破坏具有一定的特殊性。本文以拟建某高铁宝云隧道为例,就硬-软互层顺层构造作用下隧道围岩开挖损伤变形开展数值模拟分析评价,主要研究不同岩层厚度影响下的隧道围岩变形、围岩屈服渐进性及稳定性,并给出强度折减至极限状态时硬-软互层组合隧道的变形破坏模式。研究结论:(1)薄层弯曲变形是不同岩层厚度构造作用下硬-软互层顺层隧道开挖的主要变形形式,厚层围岩虽体现出了较明显的滑移,但变形量值较小,隧道支护设计时应考虑岩层厚度控制的该变形特点;(2)硬软互层组合屈服区主要沿顺层面向软岩展布,层厚越小,屈服范围越大,以0.2 m层厚顺层向屈服区为典型,层厚超过0.4 m后,拱腰顺层面屈服区迅速减小,且随厚度增大,两个方向屈服区不断减小;(3)强度折减条件下,层厚超过1.5 m后,稳定安全系数趋于定值,围岩强度主要受软岩自身控制,受硬-软组合结构影响程度降低;(4)岩层厚度较小时,隧道围岩变形模式以岩层弯曲为主,随岩层厚度的不断增大,变形模式逐渐转变为顺层滑移为主、滑移与弯曲并存;(5)本研究成果对促进该高铁的顺利建设具有理论意义和工程价值。  相似文献   

5.
层状围岩隧道在施工扰动下极易出现拱部严重超挖、掉块、离层、弯折、坍塌等工程问题,快速准确地确定围岩松动圈的范围和分布规律,对选择合理的支护设计参数以及消除安全隐患十分重要。以延安安塞经志丹至吴起高速公路大梁峁隧道为工程依托,采用离散元软件UDEC对岩层倾角分别为0°,15°,30°,45°,60°,75°和90°的层状围岩隧道开挖过程进行数值模拟,分析围岩松动圈的范围及分布规律。结果表明:岩层倾角为0°(水平)时,围岩松动圈范围最大,且出现在隧道拱顶处,松动圈范围为1.6~2.6 m;岩层倾角为0°和90°时,围岩松动圈沿隧道轴线对称分布;岩层倾角为30°,45°,60°,75°时,围岩松动圈呈不对称分布,且存在偏压现象。  相似文献   

6.
以郑万铁路黄家沟隧道标准断面为研究对象,对不同产状岩质隧道进行稳定性分析,研究围岩力学响应、变形特性以及锚杆力学特征,阐明不同于传统松散介质的层状岩质隧道失稳模式及锚杆支护要点。结果表明:节理面极大削弱了岩体稳定性,开挖会引起沿层理面滑动,导致明显地质偏压。隧道开挖使得层间节理首先被破坏,节理离层区不是发生在最大主应力方向上,而是发生在节理垂直方向。水平层状或倾角较小时,顶部和仰拱节理之间产生离层区,易引起岩层弯折破坏;随着倾角增大,顺弱势节理面滑动趋势增大,破坏主要取决于节理面强度和层状节理之间滑移;当倾角为75°~90°时,破坏主要为边墙岩块弯曲压溃;竖向节理时,中间垂直土体挟持作用减弱,易剪切破坏失稳引起冒顶坍方趋势。从群锚效应来看,锚杆与滑移面夹角大于23°时,锚杆支护效果发挥较为明显的效果。  相似文献   

7.
我国西南地区崇山峻岭、地质构造条件复杂多变,岩体内部节理、片理、层理发育。隧道穿越节理发育围岩时,极易引发围岩大变形、掌子面失稳坍塌、钢架变形扭曲、初支掉块和二次衬砌开裂等工程灾害。为了分析节理对隧道围岩稳定性的影响规律,依托玉磨铁路西双版纳隧道,利用ABAQUS建立计算分析模型,得到不同节理条件下围岩塑性破坏特征。(1)节理对称分布时,节理屈服、围岩塑性应变呈现出对称分布于拱部、两侧拱肩和仰拱两侧区域的特点。(2)节理倾角较陡时,岩体性质是影响主控因素;节理倾角较平缓时,围岩发生沿节理面的剪切滑移破坏,节理是围岩整体发生塑性破坏的主控因素;当节理倾角为60°或120°时,围岩的塑性应变最大,最大塑性应变为0.197。(3)当节理倾角为90°时,围岩及节理屈服区域主要沿着节理方向垂向分布,且影响范围深入地层中。(4)2组节理条件下造成围岩塑性破坏的主要原因是节理面的塑性屈服;当节理倾角组合为60°+90°时,围岩的塑性应变最大,最大塑性应变为0.521。  相似文献   

8.
研究目的:针对板状高地应力软岩隧道开挖的大变形问题,采用单层初期支护+双层二衬的结构形式进行支护,并进行现场试验,对初期支护、钢拱架以及两层二衬的变形与受力进行了测量,分析该支护结构在控制高地应力软岩隧道大变形方面的效果及该方案的可行性是本文的主要研究目的。研究结论:(1)传统的初期支护方式在控制高地应力软岩隧道的大变形方面效果不佳;(2)板状岩层的走向和岩层的倾角对高地应力软岩隧道开挖后的变形及受力会产生影响,一般来说,在垂直于板状软岩岩层(倾斜线)方向上的挤压力最大;(3)采用双层二衬结构,使初支与围岩一起产生变形而消除围岩的部分压力,第一层二衬起到强而稳定的支护作用并承担绝大部分的围岩压力,使第二层二衬受力很小而起到装饰作用,因此从高地应力软岩长期流变性的角度考虑,双层二衬结构对高地应力软岩隧道建成后的长期稳定性和安全运营具有很好的保障作用;(4)本研究成果可为类似工程的施工提供参考依据。  相似文献   

9.
研究目的:隧道大变形的处理俨然已成为一道世界性的难题,而其中层状围岩的大变形几乎占到90%以上,极大地困扰着隧道的建设者。针对层状围岩正交各向异性的特点,国内研究较少,采用以各向同性为理论基础的强度应力比理论判定层状围岩大变形等级有一定的局限性。本文结合在建铁路成兰线、成昆线的隧道大变形处理,剖析当下一些对层状围岩大变形认识的误区,从而提出适合层状围岩大变形判别的标准。研究结论:(1)采用强度应力比判定正交各向异性的层状围岩大变形等级,因局限性较大,仅适合一些薄层状的千枚岩、断层压碎岩等各向差异较小的围岩;(2)结合变形监控量测情况,并根据层状围岩软弱夹层的含量来判断大变形的等级,该方法简单、可靠;(3)层状围岩破坏时大致经历"软弱夹层屈服破坏、变形→相邻临空侧岩层的破坏、变形→支护结构变形、开裂、侵限"的过程;(4)层状围岩的变形和破坏主要是在层状围岩中软弱夹层的法线方向上,设计者应根据岩层的产状有针对性地进行差异设计;(5)本研究结论可适用于隧道工程中各类层状围岩下隧道大变形的等级判定及其处理。  相似文献   

10.
高地应力软岩地质环境引起的挤压大变形破坏是一种严重的工程地质灾害,针对川藏铁路隧道可能发生的挤压大变形问题,本文结合兰渝铁路大变形隧道的施工经验,在分析和总结挤压性围岩隧道变形破坏特征基础上,分析了设计阶段和施工阶段的变形分级标准,并根据"抗放结合,前期控制性释放为主"的大变形处治原则,从支护、围岩、应力及施工等方面总结了变形控制技术措施,主要包括:(1)采用排架式和桁架式结构加强支护;(2)采用超前小导管、管棚、锚杆或锚索等加强围岩;(3)采用超前导洞、微台阶、增设缓冲层、分阶段张拉锚索、分层施作多层支护等方式进行应力释放;(4)采用弱爆破或非爆破方式;(5)采用加强资源配置、优化工法等方式实现支护快速成环。  相似文献   

11.
以大连地铁202标段双隧道盾构施工工程为背景,考虑土体的分层以及隧道施工过程中盾构推进、注浆和衬砌拼装等工序,运用FLAC3D软件对盾构双隧道同向先后施工过程进行三维精细数值模拟,并与现场测量数据进行对比分析.结果表明:先施工的右线隧道掘进完成后,隧道上方各层土体越靠近地表,盾构施工引起的地层竖向变形越小,而地层的沉降槽宽度越大,地表沉降槽宽度系数为0.56;近距离双隧道同向先后开挖时,土体相互扰动,地层距离隧道轴线的高度越小,地层竖向变形非对称“双峰”特征越明显,岩层的成层性使得双峰特征消失时岩层距离隧道轴线的高度有差别;两隧道中心线和轴线附近地表有不同方向水平变形,此区域的桩基、剪力墙在隧道掘进时将受到附加剪切作用,易出现裂缝,故在施工中应做好切实的防护措施;监测结果验证了数值模拟方法的正确性,在盾构掌子面距离监测点12 m范围内,地表沉降发展得较快.  相似文献   

12.
研究目的:水平层状砂质板岩隧道围岩施工稳定性是一个难点,为研究水平层状砂质板岩围岩隧道在不同影响因素下的安全稳定性,本文以同马山隧道工程为依托,对水平层状砂质板岩隧道的稳定性及破坏机理进行研究。研究结论:(1)随着岩层厚度减小,洞室爆破开挖后成形困难程度增加,拱顶塌落范围增大,边墙、拱顶等位置破碎程度增加;(2)随着岩体坚硬程度及层理面结合程度降低,洞室由边墙部位发生轻微破坏到整体发生较大变形,成形困难,其中层理面对隧道洞室成形影响的最大段落是破碎带和裂隙带;(3)洞室失稳破坏是围岩压力与爆破动载共同作用的结果,拱顶与边墙处最易发生破坏,拱顶处破坏程度最大,边墙次之,拱腰处最小;(4)本研究成果可为水平层状围岩隧道的建设提供参考。  相似文献   

13.
研究目的:隧道穿越滇中红层这一特殊地质条件下的变形主要为局部塌方、支护结构开裂破坏,为确保类似工程的顺利实施和人员设备的安全,本文针对南华一号隧道穿越全风化、强风化泥岩地层出现的局部失稳、大变形问题,在现场调研和监控量测的基础上,分析其失稳断面的变形及应力特征,并结合数值模拟结果,提出控制围岩变形的有效措施。研究结论:(1)三台阶工法施工过程中,中、下台阶施工对围岩的扰动程度相对较大;(2)隧道开挖后,拱顶和拱肩处围岩压力随时间的变化趋势是先减小再趋于稳定,而拱腰处围岩压力随时间的变化趋势是先增大然后趋于稳定;(3)采取局部布置锚杆、局部围岩注浆加固、施作锁脚锚杆等控制措施,可有效控制局部围岩失稳及围岩变形,相关措施可为今后类似工程提供借鉴和指导作用。  相似文献   

14.
为研究正断层错动作用下矿山法隧道的受力变形机理,以胶州湾第二海底隧道穿越沧口断裂为工程背景,采用自研的大比尺穿越断层隧道结构破坏加载试验装置,针对设置柔性连接变形缝和变形缝间距对隧道结构抗错断效果的影响,开展几何相似比为1∶40的矿山法隧道穿越倾角70°的正断层错动模型试验,对错动试验过程中的隧道变形、应变分布、围岩接触压力和破坏特性等关键指标进行监测,分析获得了正断层错动作用下隧道变形和力学响应规律。研究结果表明:(1)隧道在正断层错动作用下,呈现纵向拉弯+竖向挤压的受荷模式,在下盘邻近断层面处拱顶部位和上盘邻近断层面处仰拱部位出现脱空区;(2)隧道开裂主要以纵向贯通裂缝为主,近断层面处衬砌还出现了部分斜向裂缝和环向裂缝;(3)节段间的连接形式和节段长度不会根本上改变隧道在断层错动作用下的受荷模式和变形模式,但节段间刚度越小,节段长度越小,结构对于地层强制位错的适应性就更好;(4)相比于刚性连接,节段间的柔性连接吸收了大部分地层强制位错,有效降低衬砌节段的荷载和变形,使结构趋于安全。  相似文献   

15.
为研究隧道工程大变形发生的机理及等级,从区域地应力场、地层岩性、地质构造、松动圈扩展出发,对大变形的发生机理进行综合分析。在此基础上,对隧道大变形进行分类分级,并对控制技术进行探讨。得到以下结论:(1)隧道大变形的产生往往受到区域地应力场、地层岩性、地质构造及其挤压程度的共同影响;(2)根据大变形发生的构造部位,可以将大变形分为断层型、碎裂型和顺层型3种;断层型发生在区域断层带;碎裂型发生在褶皱核部、转折端以及构造节理密集带;顺层型发生在褶皱翼部,它以隧道轴向与岩层走向小角度相交为条件。缓倾岩层是顺层的特例,易发隧道底鼓;(3)工程前期现场资料缺乏的条件下,宜在最大主应力近于水平的前提下,根据地层岩性、地质构造、相对变形量,结合工程经验,参考相应规范及其他相关研究成果,进行综合判定;(4)大变形应采取"强支护、预加固、快封闭"的控制理念。  相似文献   

16.
设计室内模型试验,改变模型中既有隧道的围岩级别和衬砌刚度,采用在既有隧道上方挖方的方式,考察挖方过程中既有隧道围岩压力、衬砌变形和结构内力的变化规律,研究既有隧道的承载拱效应。结果表明:衬砌刚度较大时Ⅴ级和Ⅵ级围岩的承载拱外边界分别位于覆跨比1.3~1.6和1.6~2.2范围内,衬砌刚度较小时Ⅴ级和Ⅵ级围岩的承载拱外边界分别位于覆跨比1.6~1.9和1.9~2.5范围内;衬砌刚度越大承载拱范围越小,围岩级别越差承载拱范围越大;在既有深埋隧道上方不断挖方时,会逐渐对承载拱产生影响,使既有隧道经历无影响(覆跨比大于2.9)、弱影响(覆跨比处于1.4~2.9)和强影响(覆跨比小于1.4)3个阶段;既有隧道上方挖方过程中,拱顶相对其他部位受影响最大。研究成果可为类似近接隧道工程的设计和施工提供借鉴与参考。  相似文献   

17.
以大梁山特长隧道工程为研究对象,通过研究不同产状岩体隧道围岩力学响应、变形特性,主要得出如下结论:岩体强度和变形特性强烈地受制于节理方位,隧道开挖后岩体沿倾斜层理面剪切滑移,节理倾角不同,隧道破坏形态和部位以及失稳模式亦不相同;由于倾斜节理会导致岩层剪切滑移破坏和地质偏压,从安全和经济出发,非对称支护参数设计显得尤为重要,而现行隧道设计规范均以等长、等间距系统锚杆设计,其合理性值得进一步商榷.  相似文献   

18.
研究目的:已有震害调查表明,围岩施工塌方引起的局部缺陷段在地震作用下均出现了不同程度的二衬剥落、错台、整体垮塌等震害,而国内外隧道相关规范多关注洞口和断层的结构抗震问题,对围岩局部缺陷段关注甚少。因此有必要深入探讨围岩局部缺陷条件下隧道结构震害特征及参数敏感性,以期为强震区围岩缺陷段设计及施工处置提供理论参考。研究结论:(1)围岩局部缺陷几何尺寸的增大不会改变动峰值加速度PGA、主应力、内力响应频谱变化规律,但会不同程度增大隧道衬砌主要部位PGA、主应力峰值和内力峰值大小;(2)局部缺陷位置变化(拱顶、拱肩、拱腰)具有显著的"局部区域特性",但无论缺陷位于什么部位,拱肩、拱顶均为薄弱部位,实际工程应对相应位置抗减震措施设置予以重视;(3)围岩状态越差、埋深越浅,越不利于隧道衬砌结构抗震;(4)围岩局部缺陷影响因素(缺陷位置p、围岩级别s、隧道埋深h、环向角度θ、径向长度l、轴向长度b)对隧道衬砌结构动力响应影响敏感性强弱关系为:缺陷位置p围岩级别s轴向长度b环向角度θ径向长度l埋深h。  相似文献   

19.
以广佛环线东环隧道工程为背景,从盾构隧道动态施工全过程出发,参考考虑开挖面空间效应的二阶段分析方法,拓展盾构隧道施工全过程的两阶段分析方法,以此分别建立盾构隧道施工第一阶段和第二阶段分析模型,研究围岩蠕变过程中围岩应力释放率、填充层厚度、填充层弹性模量对大埋深软岩盾构隧道围岩和支护结构相互作用规律的影响。结果表明:(1)施工过程中可从两方面控制围岩压力,分别为第一阶段中围岩的应力(位移)释放率及第二阶段中管片和填充层的联合支护效果;(2)第一阶段,超挖量、盾壳长度及填充层滞后距离越大,围岩传递到管片衬砌上的荷载越小;(3)壁后填充层在管片衬砌与其的联合支护体系中能起到缓冲作用,使围岩传递到管片衬砌上的荷载更均匀;(4)壁后填充层的弹性模量存在临界值,其值在50~200 MPa范围内,当壁后填充层的弹性模量远大于此临界值时,能分担较多围岩压力,当其弹性模量小于临界值时,围岩能释放一定的围岩应力,以此减小管片衬砌所受围岩压力;(5)第一阶段应力释放率对管片衬砌变形和内力的影响程度在围岩的蠕变作用下有所减小,但填充层厚度及其弹性模量对管片结构的作用规律几乎不受围岩蠕变的影响。  相似文献   

20.
当隧道穿越以水平构造应力为主导的高地应力区,特别是隧底下伏缓倾软硬互层岩体时,易发生隧道底鼓变形。选用侧压力系数、岩层倾角、围岩厚度、围岩弹性模量、隧道埋深5种影响因素,通过FLAC 3D建立数值计算模型,研究单一影响因素和多因素耦合对隧道底鼓的影响规律。结果表明:在单一影响因素下,隧道底鼓量随侧压力系数和围岩厚度的增大先增大后减小,随围岩倾角和围岩弹性模量增加而减小,随隧道埋深增加而增大;在多因素耦合作用下,各因素对隧道底鼓的影响显著性排序依次为隧道埋深>侧压力系数>硬质岩弹性模量>岩层倾角>硬质岩岩层厚度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号