首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用有限元分析法,对框架板在温度梯度作用下的翘曲应力进行仿真计算,分析了砂浆弹性模量的变化对框架板温度效应的影响。结果表明:在温度荷载作用下,框架板式轨道框架角点处和凸台边缘处将产生局部翘曲应力的集中,最大的翘曲应力产生在轨道板角点处,并产生最大的翘曲位移;随着CA砂浆弹模的增加,轨道板应力集中区域的最大翘曲应力逐渐减小,轨道板角点翘曲位移也逐渐减小。  相似文献   

2.
轨道板与水泥乳化沥青砂浆离缝是CRTSⅡ型板式无砟轨道的主要伤损形式之一,水泥乳化沥青砂浆具有支承、缓冲、传载等作用,离缝将影响无砟轨道的变形与受力。基于弹性地基梁体理论和有限元方法,建立了路基上CRTSⅡ型板式无砟轨道有限元模型,分析在温度荷载和自重作用下不同离缝长度以及产生离缝后CA砂浆层参数对轨道结构的影响。结果表明:轨道板的翘曲位移及纵向应力均随着离缝长度增大而增加;当离缝长度超过1.95 m时,轨道板的翘曲变形及纵向应力都急剧增大,建议轨道板与CA砂浆层离缝长度不宜超过1.95 m。  相似文献   

3.
无砟轨道早期病害是影响其长期服役寿命的重要因素。应用 CRTSⅡ型板式轨道有限元计算模型,对轨道板铺设过程中的受力特性进行了分析。计算结果表明,在轨道板起吊和精调过程中,其板面最大拉应力可能发生超过或接近混凝土抗拉强度的情况,将会引起横向裂纹;轨道板灌注 CA 砂浆层后,纵连前板角区域温度翘曲应力超过 CA 砂浆层抗压强度,容易出现离缝;轨道板纵连后温度翘曲应力则大为降低。加强起吊过程控制、调整精调千斤顶位置与及时进行轨道板纵连是控制CRTSⅡ型板式轨道早期病害的重要手段。  相似文献   

4.
介绍桥上纵连板式无砟轨道特点,观测和分析高速铁路桥上轨道板温度梯度及温度翘曲变形,对轨道板离缝进行统计,并对其机理进行分析,提出轨道板CA砂浆离缝整治可根据离缝宽窄及所处区段,采用接缝凿除释放应力、钻孔下压锚固与注浆相结合方案.  相似文献   

5.
CA砂浆脱空对框架型轨道板翘曲的影响分析   总被引:2,自引:2,他引:0  
CA砂浆填充层作为框架型板式轨道关键结构层,长期暴露于自然环境中,受列车荷载冲击、温度循环以及水的侵害等作用,砂浆层与轨道板间易产生脱空,劣化轨道结构受力状态。基于无砟轨道弹性地基梁体模型,分析了正常状态和砂浆层与轨道板间出现脱空时框架型板式轨道在温度梯度荷载作用下的受力情况,并针对板端横向全部脱空和板边纵向全部脱空两种常见脱空形式进行分析。结果表明,较低的砂浆弹性模量可减小轨道板翘曲和缓解列车荷载冲击作用;对于脱空状态,在正温度梯度作用下,轨道板受力和板角翘曲变形受脱空程度影响较大,而对砂浆层受力影响较小;在负温度梯度作用下,轨道板和砂浆层受力状态受脱空程度影响均不明显。  相似文献   

6.
单元板式无砟轨道结构轨道板温度翘曲变形研究   总被引:5,自引:2,他引:3  
根据单元板式无砟轨道不同施工工艺和结构受力特点,采用弹性点支承梁模拟钢轨,用实体单元模拟无砟轨道各结构层;砂浆填充层采用灌注袋法施工时,轨道板和砂浆填充层之间按接触单元处理;砂浆填充层采用模筑法施工时,轨道板和砂浆填充层之间按黏结方法处理;建立相应有限元模型,进行轨道板温度翘曲变形研究。结果表明:砂浆填充层采用灌注砂浆袋法施工时,轨道板在温度梯度荷载作用下产生的翘曲变形大于模筑法施工;采用模筑法施工砂浆填充层时,轨道板的翘曲变形随上下表面温差幅值的变化呈线性关系;而采用灌注砂浆袋法施工砂浆填充层时,轨道板的翘曲变形随上下表面温差幅值的变化呈非线性关系,温差越大,轨道板翘曲变形的变化幅度越大。有限元模型计算的结果与环形铁道轨道板的翘曲变形实测结果基本吻合,验证了模型的合理性和可靠性。  相似文献   

7.
在哈大高铁施工第Ⅰ和第Ⅲ标段线路的直线段和曲线段上,选择24块砂浆灌注施工已完成1~3个月,但尚未铺轨的CRTSⅠ型轨道板,对其高程及与砂浆垫层间离缝进行24 h全天跟踪测试,研究温度变化对轨道板温度翘曲变形及与砂浆垫层间离缝的影响规律.结果表明:轨道板的表面温差变化幅度大于环境温差的变化幅度;当轨道板表面温度达到最高时,轨道板高程的变化量、轨道板与砂浆垫层间的离缝最小,反之最大;轨道板高程的变化幅度大于轨道板与砂浆垫层间离缝的变化幅度;轨道板4个端角处的高程及离缝的变化幅度大于轨道板其他各处;曲线段上轨道板高程及轨道板与砂浆垫层间离缝的变化幅度大于直线段上的变化幅度.  相似文献   

8.
为了研究轨道板板角离缝的形成原因及治理措施,选取一高速铁路CRTSⅠ型板式无砟轨道结构,对其砂浆变形、板面高程、轨道板不同部位温度等指标进行24 h连续测试,并对测试结果进行分析。结果表明:轨道板板面与板底温差的周期性变化是导致轨道板周期性变形的主要原因;轨道板板面高程随时间变化呈现大致规律的波动变化;相对板面中心,板角在夜间翘起明显,板角离缝宽度与离缝值在夜间同步增大;充填层CA砂浆横向和竖向变形遵循热胀冷缩规律,其变形量较小,不是板角离缝产生的主因;不同涂层对混凝土表面温度具有降低作用,可用于改善板角因温度翘曲而产生的离缝程度。  相似文献   

9.
在夏季持续高温天气下,CRTSⅡ型板式无砟轨道由于温度梯度的持续作用,轨道板与砂浆层之间易产生层间离缝。基于现场气温与轨道板温度梯度实测数据,采用有限元建模计算分析持续正温度梯度作用下轨道板与砂浆层间离缝产生和发展的特征。研究结果表明:持续高温天气期间,轨道板温度整体高于气温,且温度力作用过程中正温度梯度虽未超过规范规定的轨道板设计正温度梯度90℃/m,但轨道板与砂浆层之间仍能产生层间离缝。通过比较,持续高温与温度梯度90℃/m作用下,两者层间损伤程度较为接近,且靠近板角位置层间离缝现象比其他位置更加严重。建议工务部门重视持续高温对无砟轨道工作性能的影响。  相似文献   

10.
为探讨温度荷载作用下既有离缝无砟轨道结构层间损伤发展规律及上拱变形对轨道结构力学特性的影响,基于有限单元法和界面损伤内聚力模型,建立CRTSⅡ型板式无砟轨道有限元模型.计算结果表明:温度梯度荷载作用下,层间损伤萌生于离缝区与黏结区衔接处板角位置,并随温度梯度的持续增大斜向发展;黏结区损伤横向贯通后,轨道板竖向位移存在明...  相似文献   

11.
CRTSⅡ型板式无砟轨道用CA砂浆的温度疲劳研究   总被引:1,自引:0,他引:1  
CRTSⅡ型板式无砟轨道充填层CA砂浆与轨道板接触面之间常见脱粘、离缝情况。为探讨CA砂浆在温度疲劳作用下与轨道板脱粘、离缝规律,采用-20℃到60℃的温度循环对试件进行疲劳试验,并对疲劳后的试件进行微观结构分析和热分析。结果表明:由于沥青基体在温度疲劳作用下的迁移、老化、黏性降低,CRTSⅡ型CA砂浆和轨道板混凝土经过16次循环后即出现脱粘,产生裂缝。  相似文献   

12.
针对目前在桥梁地段CRTSⅠ型板式无砟轨道凸台周围树脂离缝,建立CRTSⅠ型板式轨道力学模型,采用可压缩超弹单元模拟树脂层,分析不同扣件阻力、轨道板与CA砂浆间的摩擦阻力条件下的填充树脂层受力。结果表明:在纵向荷载作用下,一旦树脂层发生塑性变形,随着荷载消失和温度下降,树脂层将无法完全回弹,因而产生离缝,并在梁端转角和列车振动荷载作用下进一步发展;在扣件纵向阻力较大时,树脂层会从轨道板下表面与树脂层相接触的位置剪切破坏;轨道板与CA砂浆层之间的摩擦阻力对树脂层的压缩位移和剪切应力的影响不大。  相似文献   

13.
在车辆荷载和温度作用下,CRTSⅢ型板式无砟轨道由于自密实混凝土层与底座板间产生离缝,发生应力集中和局部变形,对无砟轨道服役状态和使用寿命造成明显影响。基于ABAQUS有限元模型,计算车辆与温度不同荷载组合下,层间离缝横向和纵向发展对无砟轨道结构受力变形的影响,探究伤损演变规律和维修限值。研究结果表明:层间离缝宽度小于1.5m,轨道结构受力和变形的影响很小;离缝发展至两侧钢轨正下方后,轨道结构变形和应力均增大明显;离缝长度大于1.2m,对轨道板出现受拉裂缝和无离缝端上翘;正温度梯度荷载对轨道板弯折变形和自密实混凝土层纵横拉应力以及负温度梯度荷载对轨道板上翘和纵横拉应力均有叠加放大效应。  相似文献   

14.
无砟轨道轨道板温度测量与温度应力分析   总被引:4,自引:0,他引:4  
研究目的:针对秦沈线和遂渝线无砟轨道板存在的问题,对轨道板温度进行全天的测量,总结轨道板温度的变化规律,研究温度对轨道板的影响,根据温度测量结果,进行温度翘曲应力的仿真分析,为板式无砟轨道的结构设计提供参考.研究结论:通过对轨道板进行的温度测量,得出轨道板上表面和底面最高温度较当地最高气温分别高出16 ℃和3 ℃左右,轨道板上下表面的最大温差为10~13 ℃,轨道板侧面的温度梯度接近0.5 ℃/cm的线性变化.通过建立轨道板温度翘曲应力的计算分析模型,得出框架轨道板较普通轨道板发生更小的翘曲位移和翘曲应力;普通轨道板的最大翘曲位移为0.82 mm,框架轨道板为0.61 mm;普通轨道板的最大翘曲纵向应力为1.81 MPa,框架轨道板为1.51 MPa;普通轨道板的最大翘曲横向应力为0.75 MPa,框架轨道板为0.58 MPa.  相似文献   

15.
选取已铺轨并覆盖200 mm绿化土的嵌入式轨道板,对其温度梯度及高程变化进行连续24 h观测,以研究气温变化对轨道板温度梯度及翘曲变形的影响。采用理论方法和有限元数值方法计算轨道板翘曲变形,并将计算结果与实测值进行对比分析,为嵌入式轨道的结构设计提供参考。结果表明:在24 h观测时间内,轨道板温度梯度基本为正,其最大值为10.4℃/m。在最大正温度梯度作用下,轨道板最大翘曲变形为0.028 0 mm。通过理论计算和数值计算得到的最大翘曲位移分别为0.019 4 mm和0.027 0 mm。二者均与现场测量结果接近,验证了温度实测数据、有限元数值计算模型及边界条件的准确性和可靠性。  相似文献   

16.
板式无砟轨道结构层间界面为力学薄弱面,在温度和外荷载作用下,容易发生离缝。建立CRTSⅡ型板式无砟轨道多层薄板体系全过程三维渐进损伤力学模型,分析服役前界面损伤发生、发展过程和离缝机理,以及服役后考虑历史损伤和损伤累积效应下离缝的动态演化机制。结果表明:"单元→纵连(未服役)→服役"全过程中,轨道结构在正、负温度梯度,以及整体温升和列车"拍打"作用下,层间界面不同区域发生主拉伸型、混合型和主剪切型损伤。损伤累积导致层间离缝,离缝主要从主剪切型损伤区域开始,损伤和离缝发展存在继承性。单元状态下,温度梯度较小时界面即出现一定程度损伤,且损伤随温度梯度值的逐渐增大而不断发展,但实测温度梯度多在-40~90℃/m"安全温度梯度"范围内,此时离缝发生的可能性很小。纵连(未服役)状态下,"整体温升+正温度梯度"为最不利荷载组合。在整体温升条件下,层间界面离缝产生对应的正温度梯度值显著降低。服役状态下,受列车循环冲击荷载作用,若承轨台下存在既有离缝,轨道板将"拍打"CA砂浆层,离缝发展成"花生壳状"。随着冲击次数的不断增加,离缝继续发展。  相似文献   

17.
运营期间的CRTS Ⅱ型板式无砟轨道在温度梯度荷载不断的作用下,轨道板与砂浆层之间会脱粘开裂,出现离缝,是无砟道床伤损形式之一。选择华东地区一高速铁路路基段设置测试工点,对轨道结构温度梯度及气温进行监测,并计算轨道板温度梯度极值。计算结果表明,测试期间出现的最大正温度梯度超过设计规定值。基于此,采用有限元方法建模并计算分析温度梯度荷载作用下轨道板与砂浆层间离缝的特征。结果表明,90℃/m正温度梯度荷载作用下,离缝由板端开始产生,并随温度梯度增大逐渐向板中心区域扩展。这与现场调研情况吻合。华东地区高速铁路线路高温季节出现过大的正温度梯度是轨道板与砂浆层间离缝产生和发展的主要原因之一。  相似文献   

18.
我国高速铁路无砟轨道无缝线路发展迅速,但随着列车的运营,轨道板与CA砂浆层之间常会出现离缝,这将对无砟轨道的长期服役性能产生一定的影响。以高速铁路多跨简支梁上CRTS Ⅰ型板为例进行分析,研究板边、板端、板角、板中4种典型CA砂浆离缝病害对轨道几何形位及对无缝线路受力变形情况的影响。研究结果表明:离缝病害作用下,随着桥轨间温差变大,轨道水平偏差增幅较大,轨道高低偏差最值偏大,并且板端病害对离缝区平顺性影响大。在温度荷载作用下含病害的轨道结构伸缩受力更加明显,尤其体现轨道板、底座板上,其中板边位置的病害受力变形最为明显。在列车荷载作用下在离缝病害区域轨道结构挠曲受力情况变化较大,其中板角及板端病害影响大。根据计算结果建议在无缝线路养护维修时着重检查轨道板及底座板下表面的情况,及要注意检修钢轨正下方病害情况。  相似文献   

19.
单元双块式无砟轨道中的道床板在温度梯度作用下会产生翘曲变形,可能对轨道几何形位产生不利影响,从而危害行车安全。采用有限元方法建立单元双块式无砟轨道计算模型,探索温度梯度作用下道床板的翘曲变形规律及其对轨道几何形位的影响。结果表明:在正温度梯度作用下,道床板的翘曲变形较大,可能危害高速行车安全,需采取措施进行控制;而在负温度梯度作用下,道床板的温度翘曲变形较小,可忽略。  相似文献   

20.
针对CRTSⅡ型板式轨道板下离缝问题,建立包括钢筋、预裂缝等轨道板主要特征的有限元模型,分析轨道板在整体升温40℃和温度梯度-50~100℃/m作用下, CRTSⅡ型板的纵连特征造成的板间接缝初始受力不均匀对板下离缝和钢轨不平顺的影响。结果表明:若宽接缝硬化时窄接缝存在较大的初始压应力,板温较高时窄接缝被挤碎的概率大幅增加;对板下离缝和钢轨不平顺影响最大的是窄接缝被挤碎,其次是仅宽接缝承力,而窄接缝处存在一定的初始压应力对其影响较小;由接缝处初始受力不均匀引起的板下离缝值虽然较小(增加0.5~1 mm),却会大幅增加运营维护后期砂浆层离缝的维修工作量;施工中应采取措施减小宽、窄接缝硬化时的板温差,使宽接缝硬化时的板温T_k高于窄接缝硬化时的板温Tz不超过10℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号