首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerical simulations of IC engines are of high interest for automotive engineers worldwide. The simulation models should be as fast as possible, low-computational effort and predictive tool. The correct prediction of turbulence level inside the combustion chamber of spark ignition engines is the most important factor influencing to the engine working cycle. This paper presents a development of the k-ε turbulence model applied to the commercial cycle-simulation software with the high emphasis on the intake part. The validation was performed on two engine geometries with the variation of engine speed and load comparing the cycle-simulation results of the turbulent kinetic energy and in-cylinder temperature with 3-D CFD results. In order to apply the cycle-simulation turbulence model for the simulation of entire engine map, the parameterization model of turbulence constants was proposed. The parameterized turbulence model was optimized using NLPQL optimization algorithm where the single set of turbulence model parameters for each engine was found. A good agreement of the turbulent kinetic energy during the expansion was achieved when the turbulence affects the flame front propagation and combustion rate as well.  相似文献   

2.
《JSAE Review》1995,16(4):349-355
Air flows in the intake ports and cylinders of a four-valve gasoline engine were numerically analyzed by means of an original CFD code named “GTT”. In this code, the k-ε turbulence model was used and the Chakravarthy-Osher 3rd order TVD scheme was applied to the convection terms in all the governing differential equations. The validity of the code was confirmed by comparing the calculated results of the mean velocity and turbulence intensity with the measured ones by means of LDV. Using the present code, the effect of the intake valve closing timing on the formation of vertical vortex in the cylinder of a four-valve engine was investigated. It was found that the turbulence energy in the combustion chamber near compression TDC can be increased by the retardation of intake valve closing timing in the case of intense vertical vortex, because the vertical vortex is intensified by the back flow from the cylinder to the intake ports.  相似文献   

3.
开发了一款用于混合动力的2.0L直列四缸自然吸气(NA)汽油机,采用高速燃烧技术实现更高的动力性和热效率。对于采用EGR技术的自然吸气汽油机来说,如何平衡更多进气充量的同时尽可能提高缸内湍流强度成为实现快速燃烧的关键因素。为了提高进气流通能力,借助CFD模拟仿真技术,针对进气道流通截面面积变化、气道关键结构尺寸控制、缸盖燃烧室结构等影响流通能力的因素进行规律性研究和优化设计。研究结果显示通过优化气道截面面积、气道气流走向及缸盖燃烧室结构可显著提高进气道流通能力,同时也实现了更高的滚流强度。  相似文献   

4.
进气道对增压汽油机流动特性及性能的影响   总被引:1,自引:1,他引:0  
基于某款增压发动机,通过C FD软件对不同进气道的进气组织及燃烧过程进行模拟计算,并分析了气道对发动机着火特性和燃烧参数的影响。研究结果表明:减小气道拐角半径 R或进气门直径,均可提高发动机滚流比和湍流强度;火花塞处较低的湍动能强度不利于火焰中心的形成;湍动能较强区域位于燃烧室中间区域更有利于点火之后火焰向四周迅速传播,优化了发动机的燃烧过程。  相似文献   

5.
进气道结构是决定发动机缸内气体滚流强度的主要因素。针对一款直列四缸1.2 L增压直喷、DVVT汽油机,通过试验的方法,研究了发动机不同转速、负荷工况下,进气道滚流比参数对发动机进气状态和燃烧过程的影响,并对比了不同滚流比情况下的汽油机充气模型精度。研究结果表明,进气道滚流比对发动机的进气状态有显著影响。针对相同的ECU标定数据,滚流比的改变会造成充气模型精度较为明显的偏差。  相似文献   

6.
进气预热对柴油机起动过程动力性能影响的试验分析   总被引:4,自引:0,他引:4  
为了改善某柴油机的起动特性,自行设计了柴油机进气火焰预热系统。利用基于时间的瞬时数据采集系统,测量了瞬时转速和缸内燃烧压力的变化规律,对不进气预热和进气预热条件下柴油机的起动特性进行了试验研究。试验结果表明:采用进气预热系统后,进气温度升高了18.5℃,柴油机起动过程中转速升高率增大,起动时间明显缩短;输出扭矩增大且波动明显减小;各个循环的最大燃烧压力升高且波动减小,燃油的着火滞燃期明显缩短,其着火过程中发生后燃、循环失火的概率明显减小,燃烧过程进行得更加充分,极大地改善了柴油机的起动性能。  相似文献   

7.
针对4种不同火花塞,利用三维模拟软件建立了缸内直喷汽油机的仿真计算模型,在2 000r/min冷态情况下,对缸内湍流进行了计算,得到发动机在进气冲程、压缩冲程、点火时刻气缸内及火花塞附近的流场,评价了缸内速度场、湍动能参数。结果表明:在进气初期,火花塞对周围湍动能和缸内速度场影响最大,决定了缸内初期涡团的形成以及此后缸内湍流的发展变化;随着进气门的关闭和气缸容积的增大,火花塞对缸内湍流的影响越来越小;直至活塞靠近上止点,火花塞对局部流场的影响再一次显现。采用恰当的火花塞结构,使点火位置气流处于低速且具有足够湍流强度,对点火的稳定性和火焰的传播具有深远的影响。  相似文献   

8.
The main challenge facing the concept of gasoline direct injection is the unfavourable physical conditions at which the premixed charge is prepared and burned. These conditions include the short time available for gasoline to be sprayed, evaporated, and homogeneously mixed with air. These conditions most probably affect the combustion process and the cycle-by-cycle variation and may be reflected in overall engine operation. The aim of this research is to analyze the combustion characteristics and cycle-by-cycle variation including engine-out nanoparticulates of a turbocharged, gasoline direct injected spark ignition (DISI) engine at a wide range of operating conditions. Gasoline DISI, turbo-intercooled, 1.6L, 4 cylinder engine has been used in the study. In-cylinder pressure has been measured using spark plug mounted piezoelectric transducer along with a PC based data acquisition. A single zone heat release model has been used to analyze the in-cylinder pressure data. The analysis of the combustion characteristics includes the flame development (0–10% burned mass fraction) and rapid burn (10–90% burned mass fraction) durations at different engine conditions. The cycle-by-cycle variations have been characterized by the coefficient of variations (COV) in the peak cylinder pressure, the indicated mean effective pressure (IMEP), burn durations, and particle number density. The combustion characteristics and cyclic variability of the DISI engine are compared with data from throttle body injected (TBI) engine and conclusions are developed.  相似文献   

9.
CNG发动机和汽油机燃烧的比较分析   总被引:9,自引:0,他引:9  
CNG发动机与汽油机的燃烧同为预混湍流燃烧,但火焰传播速度、着火延迟期及混合气热值均不同。为在汽油机上改燃CNG或CNG/汽油两用燃料发动机发挥CNG燃烧的优点,针对CNG燃烧特点设计发动机,才能达到较高的输出功率和较低的排放。  相似文献   

10.
We investigated the effects of the fuel injection timing — both for early and late injection — in conjunction with the throttle opening ratio on the fuel-air mixing characteristics, engine power, combustion stability and emission characteristics of a DI CNG spark engine and control system that had been modified and designed according to the author’s original idea. We verified that the combustion characteristics were affected by the fuel injection timing and that the engine conditions were affected by the throttle opening ratios and the rpm. The combustion characteristics were greatly improved for a complete open throttle ratio with an early injection timing and for a partial throttle ratio with a late injection timing. The combustion duration was governed by the duration of flame propagation in late injection timing scenarios and by the duration of early flame development in cases of early injection timing. As the result, the combustion duration is shortened, the lean limit is improved, the air-fuel mixing conditions are controlled, and the emissions are reduced through control of the fuel injection timing and vary according to ratio of the throttle opening.  相似文献   

11.
综合介绍了近几年来大功率直喷式柴油机技术发展现状 ,研究了这些新技术对缸内紊流的作用与影响 ,并根据缸内紊流的产生及其特性指出 ,大功率直喷式柴油机应以高压喷射为主 ,利用适当的缸内紊流运动并结合合理的燃烧室结构是获得优越性能的关键。  相似文献   

12.
《JSAE Review》1997,18(1):11-17
A numerical combustion model was developed for an engine CFD code in spark ignition engine combustion chambers. The combustion model features the following new concepts: (1) The introduction of preheated reactants which are produced in the turbulent mixing process and consumed in the reaction process; (2) the modification of the probability of burned and unburned gas blobs meeting each other in consideration of a change in turbulence length scale, which becomes smaller in the near wall region. With the first concept, the model deals with turbulence-reaction controlled combustion in the near wall region as well as turbulence-controlled combustion in the core region. The second concept avoids the unrealistic flame shape due to the near wall acceleration of the turbulent flame propagation, which is inherently seen in combustion models based simply on the turbulent mixing time such as the Magnussen model. It is also shown that the present model gives more realistic local heat fluxes.  相似文献   

13.
Homogeneous charge compression ignition (HCCI) engines have the potential to raise the efficiency of reciprocating engines during partial load operation. However, the performance of the HCCI engine at high loads is restricted by severe knocking, which can be observed by the excessive pressure rise rate. This is due to the rapid combustion process occurring inside the cylinder, which does not follow the flame propagation that is seen in conventional engines. In this study, a low compression ratio of 9.5:1 for a gasoline engine was converted to operate in HCCI mode with the goal being to expand the stable operating region at high loads. Initially, pure n-heptane was used as the fuel at equivalence ratios of 0.30 to 0.58 with elevated intake charge temperatures of 180 and 90 °C, respectively. The n-heptane HCCI engine could reach a maximum performance at an indicated mean effective pressure (IMEP) of 0.38 MPa, which was larger than the performance found in the literature. To reach an even higher performance, a dual-fuel system was exploited. Methanol, as an anti-detonant additive, was introduced into the intake stream with various amounts of n-heptane at fixed equivalence ratios in the range of 0.42 to 0.52. It was found that the methanol addition cooled the mixture down prior to combustion and resulted in an increased coefficient of variation (COV). In order to maintain stable combustion and keep the pressure rise rate below the limit, the intake charge temperature should be increased. Introduction of 90% and 95% (vol/vol) hydrous methanol showed a similar trend but a lower thermal conversion efficiency and IMEP value. Therefore, a dual fuel HCCI engine could maintain a high thermal conversion efficiency across a wide load and enhance a 5% larger load compared to a pure n-heptane-fuelled HCCI engine. The hydrocarbon (HC) and carbon monoxide (CO) emissions were lower than 800 ppm and 0.10%, respectively. They were less at higher loads. The nitrogen oxides (NO x ) emissions were below 12 ppm and were found to increase sharply at higher loads to a maximum of 23 ppm.  相似文献   

14.
A numerical engine mapping methodology is proposed for the engine performance and fuel consumption map generation. An integrated model is developed by coupling a single cylinder GT-Power® engine model with a MATLAB/ Simulink® based boost system model to simulate a turbocharged diesel engine over the entire engine operating speed and load ranges within reasonable computational constraints. A single cylinder engine model with the built-in multi-zone combustion modeling option in GT-Power® is configured as a predictive engine model. The cycle averaged simulation result from the engine model is used as the boundary conditions of the boost system including intake and exhaust manifolds and a turbocharger. The boost system model developed in MATLAB/Simulink® platform calculates the intake and exhaust conditions which are fed back to the engine model. The integrated system model predicts the performance and fuel consumption of a turbocharged diesel engine with better predictive capability than mean value engine models. Its computational time is fast enough to simulate the engine over the entire engine operation range compared to multi-cylinder engine models.  相似文献   

15.
利用混合气形成和燃烧三维模型建立了针对CA6SE1—21N增压点燃式CNG发动机的数值模拟研究平台,并对模型进行了试验验证,同时研究了该发动机混合气形成和燃烧的缸内微观变化历程。验证结果表明,CNG发动机混合气形成及燃烧过程的数值模拟结果和试验结果吻合较好,所选模型适合对CNG发动机进行模拟分析。模拟结果表明,缸内混合气形成可分为大幅度掺混和弱流动混合两个阶段;采用螺旋进气道与平缸盖时,在压缩后期逐渐形成强涡流、低滚流的刚性涡;点火时刻缸内混合气呈上稀下浓的分布,不利于提高点火稳定性和火焰传播速度。  相似文献   

16.
基于Atkinson理论循环建立混合动力汽油机的性能仿真模型,确定出合适的压缩比与配气正时。分别采用增加活塞顶面凸起高度(上凸型燃烧室)和减小缸盖上燃烧室高度的方式来满足Atkinson循环汽油机对压缩比的要求。同时为适应紧凑结构减小气门升程、直径(紧凑型燃烧室)。通过三维CFD计算分析,比较了两种燃烧室缸内燃烧及流动特性,发现紧凑型燃烧室能够在火核形成及扩散时期在缸内产生更高的湍动能,有利于加快火焰传播,使燃烧持续期缩短9.8%~24.4%,可显著提高燃油经济性。在混合动力用Atkinson循环发动机开发中使用紧凑型燃烧室,具有重要的应用价值。  相似文献   

17.
A method to form a homogeneous mixture using low pressure direct injection of liquid phase LPG, pent-roof combustion chamber, flat-top piston and center-located injector layout is presented. To validate the method, the mixture formation processes in the cylinder were investigated using the CFD code. The effect of different injection timing and engine loads on the mixture formation processes were researched. The simulated results showed that, the intake tumble for high load conditions or the inclined intake swirl for part load conditions would break into small-scale vortex (turbulence) near the end of compression stroke, which enhanced the homogeneous mixture formation. The results also showed that if the liquid phase LPG was injected at 60–80°CA ATDC in intake stroke even at different loads, the homogeneous mixture would be formed under any engine load conditions.  相似文献   

18.
发动机是汽车的重要组成部分,缸盖是发动机的重要零部件,精度要求高、加工工艺复杂,加工的质量直接影响发动机的整体性能和质量。其负责发动机的配气组成机构,控制着发动机的进排气量与时机,对发动机燃烧做功起到关键作用。缸盖的清洁度控制中,如颗粒度超差,会直接影响缸盖各部件的精密运行,从而影响发动机工作。  相似文献   

19.
为降低HCNG发动机NOx排放,采用负阀重叠EGR策略,利用AVL-Fire软件对HCNG发动机不同进气门开启角(θIVO)下的进气过程和燃烧过程进行了三维仿真计算,对比分析了采用负阀重叠前后发动机缸内EGR分布和燃烧过程。仿真结果表明:负阀重叠EGR策略下,排气门关闭角(θEVC)固定为340°曲轴转角不变,当θIVO为380°曲轴转角时,既可避免发生回火又能保证一定的进气量及充气效率;采用负阀重叠后,在压缩冲程后期,缸内EGR率呈梯度分布(靠近火花塞位置EGR率较低),更有利于着火及火焰传播;采用负阀重叠可降低缸内最高燃烧压力及最高温度,但会减少进入气缸的新鲜工质,降低发动机功率;通过负阀重叠实现内部EGR可降低NOx排放,但会导致着火困难,燃烧速度变慢;提高点火能量可缩短着火落后期和燃烧持续期,加快燃烧速度。  相似文献   

20.
对于采用EGR技术路线的多缸柴油机,EGR在各缸均匀分布可以确保燃烧质量,降低裸机排放。建立了某六缸国ⅣEGR柴油机进气管三维模型,采用一维和三维模拟软件相结合,对EGR在进气管内的分布进行了流动机理的模拟分析,评估了EGR各种导入方案以及进气管相关零部件结构设计对EGR和空气混合的影响。对模型进行了CFD稳态计算,研究了4种节气门位置对EGR和空气混合的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号