首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 221 毫秒
1.
The Mackenzie River is the largest river on the North American side of the Arctic and its huge freshwater and sediment load impacts the Canadian Beaufort Shelf. Huge quantities of sediment and associated organic carbon are transported in the Mackenzie plume into the interior of the Arctic Ocean mainly during the freshet (May to September). Changing climate scenarios portend increased coastal erosion and resuspension that lead to altered river-shelf-slope particle budgets. We measured sedimentation rates, suspended particulate matter (SPM), particle size and settling rates during ice-free conditions in Kugmallit Bay (3–5 m depth). Additionally, measurements of erosion rate, critical shear stress, particle size distribution and resuspension threshold of bottom sediments were examined at four regionally contrasting sites (33–523 m depth) on the Canadian Beaufort Shelf using a new method for assessing sediment erosion. Wind induced resuspension was evidenced by a strong relationship between SPM and wind speed in Kugmallit Bay. Deployment of sediment traps showed decreasing sedimentation rates at sites along an inshore–offshore transect ranging from 5400 to 3700 g m− 2 day− 1. Particle settling rates and size distributions measured using a Perspex settling chamber showed strong relationships between equivalent spherical diameter (ESD) and particle settling rates (r= 0.91). Mean settling rates were 0.72 cm s− 1 with corresponding ESD values of 0.9 mm. Undisturbed sediment cores were exposed to shear stress in an attempt to compare differences in sediment stability across the shelf during September to October 2003. Shear was generated by vertically oscillating a perforated disc at controlled frequencies corresponding to calibrated shear velocity using a piston grid erosion device. Critical (Type I) erosion thresholds (u) varied between 1.1 and 1.3 cm s− 1 with no obvious differences in location. Sediments at the deepest site Amundsen Gulf displayed the highest erosion rates (22–54 g m− 2 min− 1) with resuspended particle sizes ranging from 100 to 930 µm for all sites. There was no indication of biotic influence on sediment stability, although our cores did not display a fluff layer of unconsolidated sediment. Concurrent studies in the delta and shelf region suggest the importance of a nepheloid layer which transports suspended particles to the slope. Continuous cycles of resuspension, deposition, and horizontal advection may intensify with reduction of sea ice in this region. Our measurements coupled with studies of circulation and cross-shelf exchange allow parameterization and modeling of particle dynamics and carbon fluxes under various climate change scenarios.  相似文献   

2.
In many parts of the world coastal waters with anthropogenic eutrophication have experienced a gradual depletion of dissolved silica (DSi) stocks. This could put pressure on spring bloom diatom populations, e.g. by limiting the intensity of blooms or by causing shifts in species composition. In addition, eutrophication driven enhanced diatom growth is responsible for the redistribution of DSi from the water phase to the sediments, and changes in the growth conditions may be reflected in the sediment diatom stratigraphy.To test for changes in diatom communities we have analyzed four sediment cores from the Baltic Sea covering approximately the last 100 years. The sediment cores originate from the western Gulf of Finland, the Kattegat, the Baltic Proper and the Gulf of Riga. Three out of the four cores reveal only minor changes in composition of diatom assemblages, while the Gulf of Riga core contains major changes, occurring after the second World War. This area is set apart from the other Baltic Sea basins by a high frequency of low after spring bloom DSi concentrations (< 2 µmol L− 1) during a relatively well defined time period from 1991–1998. In 1991 to 1993 a rapid decline of DSi spring concentrations and winter stocks (down to 5 µmol L− 1) in the Gulf was preceded by exceptionally intense diatom spring blooms dominated by the heavily silicified species Thalassiosira baltica (1991–1992; up to 5.5 mg ww L− 1). T. baltica has been the principal spring bloom diatom in the Gulf of Riga since records began in 1975. DSi consumption and biomass yield experiments with cultured T. baltica suggest that intense blooms can potentially exhaust the DSi stock of the water column and exceed the annual Si dissolution in the Gulf of Riga. The phytoplankton time series reveals another exceptional T. baltica bloom period in 1981–1983 (up to 8 mg L− 1), which, however, took place before the regular DSi measurements. These periods may be reflected in the conspicuous accumulation of T. baltica frustules in the sediment core corresponding to ca. 1975–1985.  相似文献   

3.
The Baltic Sea is one of many aquatic ecosystems that show long-term declines in dissolved silicate (DSi) concentrations due to anthropogenic alteration of the biogeochemical Si cycle. Reductions in DSi in aquatic ecosystems have been coupled to hydrological regulation reducing inputs, but also with eutrophication, although the relative significance of both processes remains unknown for the observed reductions in DSi concentrations. Here we combine present and historical data on water column DSi concentrations, together with estimates of present river DSi loads to the Baltic, the load prior to damming together with estimates of the long-term accumulation of BSi in sediments. In addition, a model has been used to evaluate the past, present and future state of the biogeochemical Si cycle in the Baltic Sea. The present day DSi load to the Baltic Sea is 855 ktons y− 1. Hydrological regulation and eutrophication of inland waters can account for a reduction of 420 ktons y− 1 less riverine DSi entering the Baltic Sea today. Using published data on basin-wide accumulation rates we estimate that 1074 ktons y− 1 of biogenic silica (BSi) is accumulating in the sediments, which is 36% higher than earlier estimates from the literature (791 ktons y− 1). The difference is largely due to the high reported sedimentation rates in the Bothnian Sea and the Bothnian Bay. Using river DSi loads and estimated BSi accumulation, our model was not able to estimate water column DSi concentrations as burial estimates exceeded DSi inputs. The model was then used to estimate the BSi burial from measured DSi concentrations and DSi load. The model estimate for the total burial of BSi in all three basins was 620 ktons y− 1, 74% less than estimated from sedimentation rates and sediment BSi concentrations. The model predicted 20% less BSi accumulation in the Baltic Proper and 10% less in the Bothnian Bay than estimated, but with significantly less BSi accumulation in the Bothnian Sea by a factor of 3. The model suggests there is an overestimation of basin-wide sedimentation rates in the Bothnian Bay and the Bothnian Sea. In the Baltic Proper, modelling shows that historical DSi concentrations were 2.6 times higher at the turn of the last century (ca. 1900) than at present. Although the DSi decrease has leveled out and at present there are only restricted areas of the Baltic Sea with limiting DSi concentrations, further declines in DSi concentrations will lead to widespread DSi limitation of diatoms with severe implications for the food web.  相似文献   

4.
Large-volume sampling of 234Th was conducted to estimate particulate organic carbon (POC) export in conjunction with drifting sediment trap deployments in the northern Barents Sea in July 2003 and May 2005. 234Th-derived POC fluxes averaged 42.3 ± 39.7 mmol C m− 2 d− 1 in 2003 and 47.1 ± 30.6 mmol C m− 2 d− 1 in 2005. Sediment trap POC fluxes averaged 13.1 ± 8.2 mmol C m− 2 d− 1 in 2003 and 17.3 ± 11.4 mmol C m− 2 d− 1 in 2005, but better reflected the transient bloom conditions that were observed at each station within a season. Although 234Th fluxes agreed within a factor 2 at most stations and depths sampled, sediment trap POC fluxes were lower than large-volume POC flux estimates at almost every station. This may represent an under-collection of POC by the drifting sediment traps or, conversely, an over-collection of POC by the large-volume sampling of 234Th. It is hypothesized that the offset between the two methods is partly due to the presence of the prymnesiophyte Phaeocystis pouchetii, which potentially causes a large variation in > 53-μm POC/234Th ratios. Due to the large proportion of dissolved carbon or mucilage released by P. pouchetii, and because it is thought that P. pouchetii does not contribute significantly to the vertical export of biogenic matter in the Barents Sea, the application of large-volume sampling of 234Th may yield relatively high, and possibly inaccurate POC/234Th ratios. Hence, POC fluxes derived from 234Th sampling may be inappropriate and drifting sediment traps might be a more reliable method to measure the vertical export of biogenic matter in regions that have recurrent P. pouchetii blooms, such as the Barents Sea.  相似文献   

5.
Organic carbon budget for the Gulf of Bothnia   总被引:1,自引:0,他引:1  
We calculated input of organic carbon to the unproductive, brackish water basin of the Gulf of Bothnia from rivers, point sources and the atmosphere. We also calculated the net exchange of organic carbon between the Gulf of Bothnia and the adjacent marine system, the Baltic Proper. We compared the input with sinks for organic carbon; permanent incorporation in sediments and mineralization and subsequent evasion of CO2 to the atmosphere. The major fluxes were riverine input (1500 Gg C year− 1), exchange with the Baltic Proper (depending on which of several possible DOC concentration differences between the basins that was used in the calculation, the flux varied between an outflow of 466 and an input of 950 Gg C year 1), sediment burial (1100 Gg C year− 1) and evasion to the atmosphere (3610 Gg C year− 1). The largest single net flux was the emission of CO2 to the atmosphere, mainly caused by bacterial mineralization of organic carbon. Input and output did not match in our budget which we ascribe uncertainties in the calculation of the exchange of organic carbon between the Gulf of Bothnia and the Baltic Proper, and the fact that CO2 emission, which in our calculation represented 1 year (2002) may have been overestimated in comparison with long-term means. We conclude that net heterotrophy of the Gulf of Bothnia was due to input of organic carbon from both the catchment and from the Baltic Proper and that the future degree of net heterotrophy will be sensible to both catchment export of organic carbon and to the ongoing eutrophication of the Baltic Proper.  相似文献   

6.
A full-spectral third-generation ocean wind–wave model (Wavewatch-III) implemented in the South China Sea is used to investigate the effects of the wave boundary layer on the drag coefficient and the sea-to-air transfer velocity of dimethylsulfide (DMS) during passage of Typhoon Wukong (September 5–11, 2000) with a maximum sustained wind speed of 38 m s− 1. The model is driven by the reanalyzed surface winds (1° × 1°, four times daily) from the National Centers for Environmental Prediction. It is found that the wave boundary layer evidently enhances (16.5%) the drag coefficient (in turn increases the momentum flux across the air–sea interface), and reduces (13.1%) the sea-to-air DMS transfer velocity (in turn decreases the sea-to-air DMS flux). This indicates the possibility of important roles of wave boundary layer in atmospheric DMS contents and global climate system.  相似文献   

7.
We tested the hypothesis that dissolved silicate (DSi) yields [kg km− 2 yr− 1] of 82 major watersheds of the Baltic Sea can be expressed as a function of the hydraulic load (HL) as a measure of water residence time and the total organic carbon (TOC) concentration, both variables potentially increasing the DSi yield. Most boreal rivers fitted a linear regression model using HL as an independent variable to explain the DSi yield. Rivers with high HL, i.e., shortest residence times, showed highest DSi yields up to 2300 kg km− 2 yr− 1. This is most likely caused by an excess supply of DSi, i.e., the geochemical sources prevail over biological sinks in these boreal watersheds. The DSi yield for regulated and unregulated larger rivers of the boreal watersheds constituting about 40% of the total water discharge and of the total DSi load to the Baltic Sea, respectively, can be expressed as: DSi yield = 190 + 49.5 HL[m yr− 1] + 0.346 TOC [µM] (R2 = 0.80). Since both HL and TOC concentrations have decreased after damming, the DSi yields have decreased significantly in the regulated boreal watersheds, for the River Luleälven we estimated more than 30%. The larger eutrophic watersheds draining cultivated landscape of the southern catchment of the Baltic Sea and representing about 50% of the annual water discharge to the Baltic Sea, deviated from this pattern and showed lower DSi yields between 60–580 kg km− 2 yr− 1. DSi yields showed saturation curve like relationship to HL and it appears that DSi is retained in the watersheds efficiently through biogenic silica (BSi) production and subsequent sedimentation along the entire river network. The relationship between HL and DSi yields for all larger cultivated watersheds was best fitted by a Freundlich isotherm (DSi = 115.7HL109; R2 = 0.73), because once lake and reservoir area exceeds 10% of the watershed area, minimum DSi yields were reached. To estimate an uperturbed DSi yield for the larger eutrophic southeastern watersheds is still difficult, since no unperturbed watersheds for comparison were available. However, a rough estimate indicate that the DSi flux from the cultivated watersheds to the Baltic Sea is nowadays only half the uperturbed flux. Overall, the riverine DSi loads to the Baltic Sea might have dropped with 30–40% during the last century.  相似文献   

8.
For studies on sediment transport processes experimental data on the erosion behaviour of sediments are necessary. Because of significant differences in experimental setups and subsequently in resulting values comparisons and, where possible, correlations between methods are required. This study presents measurements with two different erosion devices (straight flume and microcosm erosion chamber), which were used for the determination of critical shear stress velocities for sandy submarine sediments and sieved sediment fractions. An approach is presented to convert measured current velocities into shear stress velocities via roughness length values and drag coefficients under hydrodynamically smooth and transitional turbulent flow conditions. The results from both devices show a good agreement and the measured erosion threshold values fit to established correlations between critical shear stress velocity and grain size. In the grain size range below 200 µm results for naturally composed sediments are influenced by effects caused by the silt- and clay fraction. Sieved sediment fractions in this grain size range tend to show lowered erosion thresholds in relation to the Shields' curve.  相似文献   

9.
The river–sea system consisting of the Gaoping (new spelling according to the latest government's directive, formerly spelled Kaoping) River (KPR), shelf, and Submarine Canyon (KPRSC) located off southern Taiwan is an ideal natural laboratory to study the source, pathway, transport, and fate of terrestrial substances. In 2004 during the flood season of the KPR, a system-wide comprehensive field experiment was conducted to investigate particle dynamics from a source-to-sink perspective in the KPRSC with the emphasis on the effect of particle size on the transport, settling, and sedimentation along the pathway. This paper reports the findings from (1) two sediment trap moorings each configured with a Technicap PPS 3/3 sediment trap, and an acoustic current meter (Aquadopp); (2) concurrent hydrographic profiling and water sampling was conducted over 8 h next to the sediment trap moorings; and (3) box-coring in the head region of the submarine canyon near the mooring sites. Particle samples from sediment traps were analyzed for mass fluxes, grain-size composition, total organic carbon (TOC) and nitrogen (TN), organic matter (OM), carbonate, biogenic opal, polycyclic aromatic hydrocarbon (PAH), lithogenic silica and aluminum, and foraminiferal abundance. Samples from box cores were analyzed for grain-size distribution, TOC, particulate organic matter (POM), carbonate, biogenic opal, water content, and 210Pbex. Water samples were filtered through 500, 250, 63, 10 µm sieves and 0.4 µm filter for the suspended sediment concentration of different size-classes.Results show that the river and shelf do not supply all the suspended particles near the canyon floor. The estimated mass flux near the canyon floor exceeds 800 g/m2/day, whose values are 2–7 times higher than those at the upper rim of the canyon. Most of the suspended particles in the canyon are fine-grained (finer than medium silt) lithogenic sediments whose percentages are 90.2% at the upper rim and 93.6% in the deeper part of the canyon.As suspended particles settle through the canyon, their size-composition shows a downward fining trend. The average percentage of clay-to-fine-silt particles (0.4–10 µm) in the water samples increases from 22.7% above the upper rim of the canyon to 56.0% near the bottom of the canyon. Conversely, the average percentage of the sand-sized (> 63 µm) suspended particles decreases downward from 32.0% above the canyon to 12.0% in the deeper part of the canyon. Correspondingly, the substrate of the canyon is composed largely of hemipelagic lithogenic mud. Parallel to this downward fining trend is the downward decrease of concentrations of suspended nonlithogenic substances such as TOC and PAH, despite of their affinity to fine-grained particles.On the surface of the canyon, down-core variables (grain size, 210Pbex activity, TOC, water content) near the head region of the canyon show post-depositional disturbances such as hyperpycnite and turbiditic deposits. These deposits point to the occurrences of erosion and deposition related to high-density flows such as turbidity currents, which might be an important process in submarine canyon sedimentation.  相似文献   

10.
Turbulent overturning on scales greater than 10 m is observed near the bottom and in mid-depth layers within the Gaoping (formerly spelled Kaoping) Submarine Canyon (KPSC) in southern Taiwan. Bursts of strong turbulence coexist with bursts of strong sediment concentrations in mid-depth layers. The turbulence kinetic energy dissipation rate in some turbulence bursts exceeds 10− 4 W kg− 1, and the eddy diffusivity exceeds 10− 1 m2 s− 1. Within the canyon, the depth averaged turbulence kinetic energy dissipation rate is ~ 7 × 10− 6 W kg− 1, and the depth averaged eddy diffusivity is ~ 10− 2 m2 s− 1. These are more than two orders of magnitude greater than typical values in the open ocean, and are much larger than those found in the Monterey Canyon where the strong turbulent mixing has also been. The interaction of tidal currents with the complex topography in Gaoping Submarine Canyon is presumably responsible for the observed turbulent overturning via shear instability and the breaking of internal tides and internal waves at critical frequencies. Strong 1st-mode internal tides exist in KPSC. The depth averaged internal tidal energy near the canyon mouth is ~ 0.17 m2 s− 2. The depth integrated internal tidal energy flux at the mouth of the canyon is ~ 14 kW m− 1, propagating along the axis of the canyon toward the canyon head. The internal tidal energy flux in the canyon is 3–7 times greater than that found in Monterey Canyon, presumably due to the more than 10 times larger barotropic tide in the canyon. Simple energy budget calculations conclude that internal tides alone may provide energy sufficient to explain the turbulent mixing estimated within the canyon. Further experiments are needed in order to quantify the seasonal and geographical distributions of internal tides in Gaoping Submarine Canyon and their effects on the sediment flux in the canyon.  相似文献   

11.
Silicon dynamics in the Oder estuary, Baltic Sea   总被引:1,自引:0,他引:1  
Studies on dissolved silicate (DSi) and biogenic silica (BSi) dynamics were carried out in the Oder estuary, Baltic Sea in 2000–2005. The Oder estuary proved to be an important component of the Oder River–Baltic Sea continuum where very intensive seasonal DSi uptake during spring and autumn, but also BSi regeneration during summer take place. Owing to the regeneration process annual DSi patterns in the river and the estuary distinctly differed; the annual patterns of DSi in the estuary showed two maxima and two minima in contrast to one maximum- and one minimum-pattern in the Oder River. DSi concentrations in the river and in the estuary were highest in winter (200–250 μmol dm− 3) and lowest (often less than 1 μmol dm− 3) in spring, concomitant with diatom growth; such low values are known to be limiting for new diatom growth. Secondary DSi summer peaks at the estuary exit exceeded 100 μmol dm− 3, and these maxima were followed by autumn minima coinciding with the autumn diatom bloom. Seasonal peaks in BSi concentrations (ca. 100 μmol dm− 3) occurred during the spring diatom bloom in the Oder River. Mass balance calculations of DSi and BSi showed that DSi + BSi import to the estuary over a two year period was 103.2 kt and that can be compared with the DSi export of 98.5 kt. The difference between these numbers gives room for ca. 2.5 kt BSi to be annually exported to the Baltic Sea. Sediment cores studies point to BSi annual accumulation on the level of 2.5 kt BSi. BSi import to the estuary is on the level of ca. 10.5 kt, thus ca. 5 kt of BSi is annually converted into the DSi, increasing the pool of DSi that leaves the system. BSi concentrations being ca. 2 times higher at the estuary entrance than at its exit remain in a good agreement with the DSi and BSi budgeting presented in the paper.  相似文献   

12.
Atmospheric molar fraction of CO2 (xCO2atm) measurements obtained on board of ships of opportunity are used to parameterize the seasonal cycle of atmospheric xCO2 (xCO2atm) in three regions of the eastern North Atlantic (Galician and French offshore and Bay of Biscay). Three selection criteria are established to eliminate spurious values and identify xCO2atm data representative of atmospheric background values. The filtered data set is fitted to seasonal curve, consisting of an annual trend plus a seasonal cycle. Although the fitted curves are consistent with the seasonal evolution of xCO2atm data series from land meteorological stations, only ship-board measurements can report the presence of winter xCO2atm minimum on Bay of Biscay. Weekly air–sea CO2 flux differences (mmol C·m− 2 day− 1) produced by the several options of xCO2atm usually used (ship-board measurements, data from land meteorological stations and annually averaged values) were calculated in Bay of Biscay throughout 2003. Flux error using fitted seasonal curve relative to on board measurements was minimal, whereas land stations and annual means yielded random (− 0.2 ± 0.3 mmol C·m− 2·day− 1) and systematic (− 0.1 ± 0.4 mmol C·m− 2 day− 1), respectively. The effect of different available sources of sea level pressure, wind speed and transfer velocity were also evaluated. Wind speed and transfer velocity parameters are found as the most critical choice in the estimate of CO2 fluxes reaching a flux uncertainty of 7 mmol C·m− 2·day− 1 during springtime. The atmospheric pressure shows a notable relative effect during summertime although its influence is quantitatively slight on annual scale (0.3 ± 0.2 mmol C·m− 2·day− 1). All results confirms the role of the Bay of Biscay as CO2 sink for the 2003 with an annual mean CO2 flux around − 5 ± 5 mmol C m− 2 day− 1.  相似文献   

13.
Activities of the naturally occurring, short-lived and highly particle-reactive radionuclide tracer 234Th in the dissolved and particulate phase were measured at three shallow-water stations (maximum water depths: 15.6, 22.7 and 30.1 m) in Mecklenburg Bay (south-western Baltic Sea) to constrain the time scales of the dynamics and the depositional fate of particulate matter. Activities of particle-associated (> 0.4 μm) and total (particulate + dissolved) 234Th were in the range of 0.08–0.11 dpm L− 1 and 0.11–0.20 dpm L− 1, respectively. The activity ratio of total 234Th and its long-lived and conservative parent nuclide 238U was well below unity (range: 0.09–0.19) indicating substantial radioactive disequilibria throughout the water column, very dynamic trace-metal scavenging and particle export from the water column at all three stations. For the discussion the 234Th data of this study were combined with previously published water-column 234Th and particulate-matter data from Mecklenburg Bay (Kersten et al., 1998. Applied Geochemistry 13, 339–347). The resulting average vertical distribution of total 234Th/238U disequilibria was used to estimate the depositional 234Th flux to the sediment. There was a virtually constant net downward flux of 234Th of about 28 dpm m− 2 d− 1 leaving each water layer of one meter thickness. Thorium-234-derived net residence times of particulate material regarding settling from a given layer in the water column were typically on the order of days, but with maximum values of up to a couple of weeks. Based on an average ratio of particulate matter (PM) to particle-associated 234Th a net flux of about 145 mg PM m− 2 d− 1 was estimated to leave each water layer of one meter thickness. The estimated cumulative water-column-derived particulate-matter fluxes at the seafloor are higher by a factor of about 2 than previously published sediment-derived estimates for Mecklenburg Bay. This suggests that about half of the settling particulate material is exported from the study area and/or subject to processes such as mechanical breakdown, remineralisation and dissolution. Lateral particulate-matter redistribution and particle breakdown in the water column (as opposed to the sediment) seem to be favoured by (repeated) particle resuspension from and resettling to the seafloor before ultimate sedimentary burial. The importance of net lateral redistribution of particulate material seems to increase towards the seafloor and be particularly high within the bottommost few meters of the water column.  相似文献   

14.
In this paper the results of a study on the distribution of pore water phosphates and ammonia, and their fluxes under anoxic condition in a deep (> 70 m) accumulation-type bottom of the south-eastern Baltic Sea, namely in the Gdańsk Deep and the adjacent areas, are presented. All measurements were taken during the growth period, i.e. in September 2000, April 2001 and June 2002. Benthic phosphate and ammonia fluxes were estimated using Fick's First Law. Phosphate and ammonia concentrations ranged from 7.5 to 266.3 μmol dm− 3 and from 53.6 to 1248.3 μmol dm− 3, respectively. The values recorded in the central part of the Gdańsk Deep were lower than those found both on its slopes and on the SW slope of the Gotland Deep. The lowest phosphate contents were typical of the Oblique Sill which separates the Gdańsk and Gotland Deeps.In 1993–2002, as a result of anoxia the sediments in the Gdańsk Deep released about 5.1 × 103 t P and 22.8 × 103 t N. These loads supplied on average 1.5% and 0.9% of phytoplankton's demand for P and N, respectively. In comparison to the total external load of nutrients discharged to the Gulf of Gdańsk (i.e. 8.79 × 103 t year− 1 Ptot and 130.79 × 103 t year− 1 Ntot; [Witek, Z., Humborg, Ch., Savchuk, O., Grelowski, A. and Łysiak-Pastuszak, E., 2003. Nitrogen and phosphorus budgets of the Gulf of Gdańsk (Baltic Sea). Est. Coast. Shelf Sci., 57:239–248.]), the return flux of P and N from the anoxic sediments to the water column in the Gdańsk Deep was a minor source of these elements.  相似文献   

15.
We measured the abundance and biomass of phototrophic and heterotrophic microbes in the upper mixed layer of the water column in ice-covered Franklin Bay, Beaufort Sea, Canada, from December 2003 to May 2004, and evaluated the influence of light and nutrients on these communities by way of a shipboard enrichment experiment. Bacterial cell concentrations showed no consistent trends throughout the sampling period, averaging (± SD) 2.4 (0.9) × 108 cells L− 1; integrated bacterial biomass for the upper mixed layer ranged from 1.33 mg C m− 3 to 3.60 mg C m− 3. Small cells numerically dominated the heterotrophic protist community in both winter and spring, but in terms of biomass, protists with a diameter > 10 µm generally dominated the standing stocks. Heterotrophic protist biomass integrated over the upper mixed layer ranged from 1.23 mg C m− 3 to 6.56 mg C m− 3. Phytoplankton biomass was low and variable, but persisted during the winter period. The standing stock of pigment-containing protists ranged from a minimum value of 0.38 mg C m− 3 in winter to a maximal value of 6.09 mg C m− 3 in spring and the most abundant taxa were Micromonas-like cells. These picoprasinophytes began to increase under the ice in February and their population size was positively correlated with surface irradiance. Despite the continuing presence of sea ice, phytoplankton biomass rose by more than an order of magnitude in the upper mixed layer by May. The shipboard experiment in April showed that this phototrophic increase in the community was not responsive to pulsed nutrient enrichment, with all treatments showing a strong growth response to improved irradiance conditions. Molecular (DGGE) and microscopic analyses indicated that most components of the eukaryotic community responded positively to the light treatment. These results show the persistence of a phototrophic inoculum throughout winter darkness, and the strong seasonal response by arctic microbial food webs to sub-ice irradiance in early spring.  相似文献   

16.
Three aspects of the appendicularian O. dioica's ecophysiology were measured here: 1) morphological parameters over a wide range of appendicularian sizes, including mature animals in order to document the morphological characteristics inducing reproduction; 2) clearance rate and assimilation efficiency using feeding incubations with different algal concentrations and 3) the effect of food concentration on growth, mortality and reproduction.The relationship between the body carbon weight and the clearance rate follows a power function, with an exponent of 0.91 (± 0.07). The rate of particles retention increases with the food concentration following a Michaelis–Menten relationship (half-saturation constant = 151 ± 22 µg C l− 1, maximum clearance rate = 12 ± 1 µg C µg C− 1 d− 1). The carbon assimilation efficiency decreases with the increasing food concentration. As a result, appendicularian growth which is limited in concentrations lower than 50 µg C l− 1 is saturated above 100 µg C l− 1.In immature animals the gonad represents less than 30% of the body volume whereas in mature individuals, its volume varies between 50% and 87% (mean 63%) suggesting that gonad/total volume ratio can be used as indicator of the maturation stages. The gonad weight in mature animals represents 70.3 (± 4.6)% of the total body carbon weight. Two major maturity stages can explain the changes in energy allocation: i) the somatic growth, when less energy is invested in gonad growth when compared to the rest of the body and ii) the maturation phase where most of the assimilated matter is invested in gonad maturation. This process is rapid, lasting only few hours. For this reason we measured completely mature organisms that are generally not measured during the experimental work with appendicularians. In food-limited conditions, the gonad maturation process starts with smaller individuals and ends with smaller reproductive animals having the same gonad to total volume ratio than in unlimited food conditions. The results obtained in this study were used to model the life cycle of O. dioica (see Lombard, F., Sciandra, A. and Gorsky, G., 2009-this volume. Appendicularian ecophysiology. II. Modeling nutrition, metabolism, growth and reproduction of the appendicularian Oikopleura dioica.).  相似文献   

17.
Seasonal changes in the abundance and biomass of cyanobacteria (Synechococcus and Prochlorococcus) and picoeukaryotes were studied by flow cytometry in the upper layers of the central Cantabrian Sea continental shelf, from April 2002 to April 2006. The study area displayed the typical hydrographic conditions of temperate coastal zones. A marked seasonality of the relative contribution of prokaryotes and eukaryotes was found. While cyanobacteria were generally more abundant for most of the year (up to 2.4 105 cells mL− 1), picoeukaryotes dominated the community (up to 104 cells mL− 1) from February to May. The disappearance of Prochlorococcus from spring through summer is likely related to shifts in the prevailing current regime. The maximum total abundance of picophytoplankton was consistently found in late summer–early autumn. Mean photic-layer picoplanktonic chlorophyll a ranged from 0.06 to 0.53 µg L− 1 with a relatively high mean contribution to total values (33 ± 2% SE), showing maxima around autumn and minima in spring. Biomass (range 0.58–40.16 mg C m− 3) was generally dominated by picoeukaryotes (mean ± SE, 4.28 ± 0.27 mg C m− 3) with an average contribution of cyanobacteria of 30 ± 2%. Different seasonality of pigment and biomass values resulted in a clear temporal pattern of picophytoplanktonic carbon to chlorophyll a ratio, which ranged from 10 (winter) to 140 (summer). This study highlights the important contribution of picoplanktonic chlorophyll a and carbon biomass in this coastal ecosystem.  相似文献   

18.
Processes involved in erosion, transport and deposition of cohesive materials are studied in a transect from shallow (16 m) to deep (47 m) water of the SW Baltic Sea. The wave- and current-induced energy input to the seabed in shallow water is high with strong variability and suspended matter concentrations may double within a few hours. Primary settling fluxes (from sedimentation traps) are less than 10 g m−2 day−1, whereas resuspension fluxes (evaluated from sedimentation flux gradients) are 15–20 times higher and the residence time for suspended matter in the water column is 1–2 days. Settling velocities of aggregates are on average six times higher than for individual particles resulting in an enhanced downward transport of organic matter. Wave-induced resuspension (four to six times per month) takes place with higher shear stresses on the bottom than current-induced resuspension (three to five times per month). The short residence time in the water column and the frequent resuspension events provide a fast operating benthic–pelagic coupling. Due to the high-energy input, the shallow water areas are nondepositional on time scales longer than 1–2 weeks. The sediment is sand partly covered by a thin fluff layer during low-energy periods. The presence of the fluff layer keeps the resuspension threshold very low (<0.023 N m−2) throughout the year. Evaluated from 3-D sediment transport modeling, transport from shallow to deep water is episodic. The net main directions are towards the Arkona Basin (5.5×105 t per year) and the Bornholm Basin (3.7×105 t per year). Energy input to the bottom in deep water is low and takes place much less frequently. Wave-induced resuspension occurs on average once per month. Residence time of particles (based on radioactive isotopes) in the water column is half a year and the sediment accumulation rate is 2.2 mm year−1 in the Arkona Basin.  相似文献   

19.
The biological dynamics of the open northern Red Sea (21.5°–27.5° N, 33.5°–40° E) have not been studied extensively, due in part to both the inaccessibility of this desert region and political considerations. Remotely-sensed chlorophyll a data therefore provide a framework to investigate the primary patterns of biological activity in this oceanic basin. Monthly chlorophyll a data from the 8-year Sea-viewing Wide Field-of-View sensor (SeaWiFS) mission, and data from the Moderate Resolution Imaging Spectroradiometer (MODIS), were analyzed with the Goddard Earth Sciences Data and Information Services Center (GES DISC) online data analysis system “Giovanni”. The data indicate that despite the normal low chlorophyll a concentrations (0.1–0.2 mg m− 3) in these oligotrophic waters, there is a characteristic seasonal bloom in March–April in the northernmost open Red Sea (24° to 27.5° N) concurrent with minimum sea surface temperature. The location of the highest chlorophyll concentrations is consistent with a linear box model [Eshel, G., and Naik, N.H., 1997. Climatological coastal jet collision, intermediate water formation, and the general circulation of the Red Sea. J. Phys. Oceanogr. 27(7), 1233–1257.] of Red Sea circulation. Two years in the data set exhibited a different seasonal cycle consisting of a relatively weak northern spring bloom and elevated chlorophyll concentrations to the south (21.5° to 24° N).The data also indicate that large coral reef complexes may be sources of either nutrients or chlorophyll-rich detritus and sediment, enhancing chlorophyll a concentration in waters adjacent to the reefs.  相似文献   

20.
Protist abundance and taxonomic composition were determined in four development stages of newly formed sea ice (new ice, nilas, young ice and thin first-year ice) and in the underlying surface waters of the Canadian Beaufort Sea from 30 September to 19 November 2003. Pico- and nanoalgae were counted by flow cytometry whereas photosynthetic and heterotrophic protists ≥ 4 µm were identified and counted by inverted microscopy. Protists were always present in sea ice and surface water samples throughout the study period. The most abundant protists in sea ice and surface waters were cells < 4 µm. They were less abundant in sea ice (418–3051 × 103 cells L− 1) than in surface waters (1393–5373 × 103 cells L− 1). In contrast, larger protists (≥ 4 µm) were more abundant in sea ice (59–821 × 103 cells L− 1) than in surface waters (22–256 × 103 cells L− 1). These results suggest a selective incorporation of larger cells into sea ice. The ≥ 4 µm protist assemblage was composed of a total number of 73 taxa, including 12 centric diatom species, 7 pennate diatoms, 11 dinoflagellates and 16 flagellates. The taxonomic composition in the early stage of ice formation (i.e., new ice) was very similar to that observed in surface waters and was composed of a mixed population of nanoflagellates (Prasinophyceae and Prymnesiophyceae), diatoms (mainly Chaetoceros species) and dinoflagellates. In older stages of sea ice (i.e., young ice and thin first-year ice), the taxonomic composition became markedly different from that of the surface waters. These older ice samples contained relatively fewer Prasinophyceae and more unidentified nanoflagellates than the younger ice. Diatom resting spores and dinoflagellate cysts were generally more abundant in sea ice than in surface waters. However, further studies are needed to determine the importance of this winter survival strategy in Arctic sea ice. This study clearly shows the selective incorporation of large cells (≥ 4 µm) in newly formed sea ice and the change in the taxonomic composition of protists between sea ice and surface waters as the fall season progresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号