首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cross sea channel for the Qiongzhou Strait not only provides a solution for transportation, but also plays an important role in the political and economic development of the region. In addition, the project has an extensive impact on many fields, such as energy, national defense, science and technology, opening up and reform, comprehensive utilization and so on. It is a significant project to enhance China′s comprehensive national strength, defend the country′s territorial integrity and promote regional economic development. The geological conditions across the Qiongzhou Strait are complex. A large amount of existing engineering geological information and hydrogeological data are collected, based on which the seismic impact on subsea tunnels and the main geological conditions including tectonic structures are analyzed. Different options crossing the Qiongzhou Strait have been considered and compared in terms of engineering geology, environmental condition, as well as the construction feasibility. The analystical results indicate that a subsea tunnel has more advantages over a bridge. Because more complicated technical difficulties have to be solved for a highway tunnel which would potentially increase construction and operation costs, a railway tunnel scheme is recommended. Vehicles can be carried by trains through the Qiongzhou Strait railway tunnel. Based on the seabed topography and geological conditions, four preliminary railway tunnel routes are proposed. After a comprehensive comparative analysis, the railway tunnel route Ⅱ is identified to be superior to other alternatives and should be the basis for determining the final tunnel layout. The proposed tunnel cross section includes two railway tunnels and one service tunnel. All the three tunnels have the same structural form and dimension and will be constructed by shield.  相似文献   

2.
YAN Jinxiu 《隧道建设》2019,39(4):537-544
In this paper, the current situation of tunnel engineering in China is introduced, especially the achievements obtained in the field of tunnel construction since the reform and opening up over 40 years. The 34 708 km long traffic tunnel built after reform and opening up takes 96% of the total length. The challenges met and achievements obtained during the key tunnel projects construction in China are presented emphatically from the aspects of extra long tunnel, deep tunnel, large tunnel, tunnel at high altitude and tunnel in complex environment. It is pointed out that: the main technological challenges during extra long tunnel construction are the accuracy of geological investigation, rapid construction and running disaster prevention; the main challenges during deep tunnel construction are high geostress, high waterpressure and high geothermal; the large tunnel faces high design and construction challenges; the challenges during tunnel construction at high altitude are freezing thawing and hypoxia; but still, many tunnels have been built under complex environments, including karst, gas, high geostress, high waterpressure, expansive rock, etc., and many technological breakthroughs have been achieved. The development trend of tunnel projects in China is proposed from the aspects of investigation, design, construction and operation, turning the development speed into development quality. It is generally acknowledged that the tunnel engineering achievements in China over the past 40 years benefit significantly from the development of international tunnel technology. Meanwhile, the development of tunneling technology in China has also greatly contributed to the international tunnel engineering development.  相似文献   

3.
In this paper, the application status of foundation trench excavation and navigation channel dredging, dry dock construction, element precasting, element transport, element mooring, element immersion, joint treatment and foundation treatment of several typical immersed tunnels in China are introduced. And then the Honggu Immersed Tunnel in Nanchang and subsea tunnel of island tunnel project of Hong Kong Zhuhai Macao Bridge are taken as examples; and some innovations of key technologies, i.e. key construction technology, element transport and immersed technology, differential settlement control technology for element immersion, subsea connection technology, and subsea space development and subsea harbor construction technology, are summarized for river crossing and sea crossing immersed tunnels. Finally, the development trends of immersed tunnels are prospected based on new technologies and equipments from the aspects of prolongation of immersed tunnel, field breakthrough, urban construction promoting and traffic demand adding of cities along rivers and seas. The results can provide reference for construction and popularization of immersed tunnels.  相似文献   

4.
The total length of the 2nd stage water transfer project in the northern area of Xinjiang of China is 540 km. The project consists of three tunnels, namely Xi Er (XE) Tunnel, Ka Shuang (KS) Tunnel and Shuang San (SS)〖HJ6.5mm〗 Tunnel, with lengths of 139.04 km, 283.27 km and 92.15 km respectively. All of these three tunnels have deep cover and are super long tunnels, and 95.6% of the total length of these three tunnels is constructed by TBMs. KS Tunnel is the longest water tunnel built or under construction in the world. In the paper, the trial TBM boring scheme and schedule of the water transfer project are introduced; the geological conditions revealed are statistically analyzed; and main project difficulties, i.e. durability of key equipment in long distance driving, passing through fault and fracture zones, water inrush, single head ventilation and transportation in long distance tunneling, anti slope drainage, and rock breaking efficiency and boring efficiency, are put forward. The adaptability of the TBMs used is analyzed from the aspects of adaptability to different surrounding rocks, adaptability to bad geological conditions and countermeasures, long distance ventilation and belt conveyor mucking and countermeasures, and TBM boring stability (such as equipment availability, boring time proportion, system malfunction and operation time). The following conclusions are obtained: (1) Accurate geological survey is the precondition of efficient tunneling. (2) The open type TBM can better adapt to Grade Ⅱ and Ⅲ of surrounding rocks, jointed and fractured zones and small faults; the adaptability of the TBMs used to the large scale fault fracture zones and water rich strata in this project is poor, and it needs to be improved in aspects of TBM equipment, supporting and construction technology. (3) The average availability of the TBM equipment in the trial boring stage is 89.9%, however, the malfunction rate of some ancillary equipment is high, particularly oil leakages occur to the main bearing seals; in order to achieve long distance tunneling, it is necessary to further improve the reliability and durability of the TBM equipment. (4) The average net boring efficiency in the trial boring stage is 296%, and TBM1 in Section Ⅱ of SS Tunnel achieves up to 45.2 % net boring efficiency; and highest monthly progress rate is 1 280 m, which created the highest record of the open type TBM boring in China. (5) TBM need to make great efforts to achieve 90% of the equipment system′s availability and over 40% of the tunneling efficiency.  相似文献   

5.
For the water conveyance tunnels in the long distance water diversion projects constructed or planned in China, most of them have to pass through mountain areas with complex geological conditions, due to the constraints of route selection. These tunnels might face engineering problems such as harsh natural environment, high seismic intensity and steep terrain, leading to difficulties in construction and high operational risks. In this paper, some key technical issues on the construction of ultra long deep buried water conveyance tunnels under complex geological conditions are summarized into 5 aspects, namely, (1) exploration and testing techniques for deep buried tunnels, (2) prediction and prevention for large deformation and rock burst in the surrounding rock masses, (3) failure mechanism and anti faulting techniques of the surrounding rock masses and lining for tunnels crossing active faults, (4) synergistic load bearing mechanism and life cycle design theory for rock support system of deep buried tunnels, (5) disaster treatment for deep and long tunnels such as prevention of high pressure water inrush. The scientific and technical problems to be solved and their development directions are pointed out, which can provide some reference for engineering construction of ultra long deep buried tunnels.  相似文献   

6.
LI Jiangao  WANG Changhong 《隧道建设》2019,39(10):1678-1689
The project under study is an overlapping twisted shield bored tunnels in weak water rich strata. The purpose of the study is to solve the key technological problems in the construction of the project. The optimal construction sequence of the overlapping twisted shield tunnels is determined according to the engineering geological conditions, the surrounding working environment, and theoretical analysis on the spatial relationship of the four tunnels, and verification control are carried out via monitoring means. The tunnel construction is properly timed, smart self propelled movable support jumbo is adopted, and grouting reinforcement technology is used to ensure the construction safety of the overlapping twisted shield bored tunnels. The grouting pre reinforcement technology and the clay shock technology are adopted to ensure the safety of the surrounding buildings. The technologies for the construction of the overlapping twisted shield bored tunnels described in this paper is of great significance for the construction of similar overlapping tunnels with high shield launching/receiving risks and crossing under important structures with small clearance.  相似文献   

7.
SUN Jun 《隧道建设》2018,38(10):1592-1602
The author explains why a giant undersea immersed tube tunnel was selected for the sea area of the main channel of the east side of the Hong Kong Zhuhai Macao Fixed Link Project, instead of employing a bridge or shield tunnel; and summarizes several domestic and international leading innovative technologies applied in the island tunnel construction of the Hong Kong Zhuhai Macao Fixed Link Project, including the use of huge self stabilized steel cylinders as retaining structure of foundation pits for constructing the artificial islands, the large area and ultra deep "sand compaction pile (SCP) composite foundation" reinforcement technology, "semi rigid segment joints", "sandwich" steel RC combined inverted trapezoid closure joints, and crack control and anti corrosion/durability design for RC tube structure. All these technologies reflect Chinese wisdom and Chinese speed. The author also points out some technical issues to which attention should be paid after the immersed tube tunnel of the project is put into operation: (1) Will the post construction settlement and differential settlement of the immersed tube tunnel further develop after the project is open to traffic? How much is the final convergence value? If it exceeds the limit, what control measures should be taken?(2) How to deal with the issue that the joints of large/small elements or segments are open? How to ensure that all the large and small joints between segments of the tube are "watertight"? Furthermore, the author presents some suggestions and control measures: (1) For excessive post construction settlement (especially differential settlement) spotted on large joints, it is suggested to incorporate "micro disturbance grouting" for post treatment. (2) If a joint opens under the excessive positive bending moment at the floor slab, it is believed that the open joint on the floor slab can be closed again by cutting off some prestressed tendons in the roof slab of the segment to reduce the positive bending moment of the section.  相似文献   

8.
Water Supply Project in the Central City of Jilin Province is a large scale project which involves complex geological condition and high technical difficulties. In order to maximize the water delivery, the overlength pressure hydraulic tunnel is introduced. Based on detailed geological survey and other reliable technical references, this project can be treated as a demonstration in terms of how to lay large diameter TBM through a karst area with limestone. The in situ test is introduced to test the non bonded pre stress circumferential anchor tunnel structure and culvert structure when the water transmission engineering line crosses the shallow buried valley section. The Class Ⅰ and Class Ⅱ granite tunnels excavated by TBM is not aligned with saving project investment and speeding up construction progress. The BQ method is introduced to analyze the rock quality classification of long tunnels. There are not many domestic engineering examples of the above mentioned key technologies, and there are no mature theories and experiences to refer to. Based on theoretical research, numerical calculations, model tests, and productive in situ tests, those key technical problems of ultra long and pressurized tunnels are solved. This project has a great theoretical and engineering value.  相似文献   

9.
Tsinghuayuan Tunnel of Beijing Zhangjiakou High speed Railway is the first fully prefabricated high speed railway tunnel in China. The supporting structure, subrail structure, and subsidiary structure of Tsinghuayuan Tunnel are all prefabricated in the factory. The strength, deformation and stability of subrail structure are analyzed by numerical simulation method; a kind of three block type of subrail prefabricated structure is put forward according to prefabricated assembling technology; and the subrail space is used to ventilate and rescue under the stability condition. The connection between subrail structure and shield segment is the key to fully prefabricated assembling technology. By introducing the grouting technology and construction keys of subrail structure, the stress on subrail structure and shield segment can be balanced. The results can provide reference for similar projects in the future.  相似文献   

10.
SUN Jun 《隧道建设》2018,38(11):1753-1764
The author discusses the necessity and urgency of constructing the Bohai Bay Crossing Corridor from the following aspects such as the increasing traffic volume, the convenience of the transportation after the corridor is constructed, and the regional benefit brought by the corridor. As for the timing of the construction of the sea crossing corridor, the author thinks that as long as the national economic situation permits and relevant conditions are basically available, the preliminary work should be carried out as soon as possible so as to promote the early commencement of the construction. Regarding the proposal of building another coastal national highway/high speed railway along the Bohai Bay coast, the author puts forward his viewpoints. In the aspect of construction risks, the author thinks that the geological risks in the construction of the Bohai Bay Crossing Corridor are very difficult to be dealt with; therefore, strict and detailed risk assessment should be carried out, and effective safety measures should be taken to mitigate the risks. The author also briefly describes the technological advantages of the tunnel proposal selected for the Bohai Bay Crossing Corridor, and briefly analyzes some key technological issues in the tunnel construction. The author describes the construction scheme and construction period estimation for the sea crossing corridor in details. The author makes the following proposal are given: (1)the hard rock tunnel boring machine (TBM) assisted by the drilling and blasting method should be used for the construction of the long sea crossing tunnel of Bohai Bay Crossing Corridor; (2) a parallel service tunnel shall be arranged between the twin main tunnel tubes; (3) in Proposal 2, the diameters of the twin main tunnel tubes and the service tunnel should be 8.0 m and 55 m, respectively. The proposal has two optional solutions: Solution 1: The service tunnel ( 55 m) located between the main tunnel tubes will be constructed first; for the main tunnel tubes, the disassembled TBMs ( 8 m) and the backup gantries are assembled for tunneling after arriving at the main tunnel tubes through the service tunnel and the cross passage; Solution 2 (alternative): Tunneling with  55 m TBM is carried out; the  55 m TBM will be dismantled to pass through the cross passage, and then be re assembled after arriving at the main tunnel; the start section (180 m) of main tunnel tube will be formed by  55 m TBM before it is enlarged to  8 m by drilling and blasting method; or the cross passage is enlarged to a large curved space to allow the 5.5 m TBM passing throught without disassembly. Comparison and contrast will be made and the preferred solution will be adopted. According to the rough estimation on the construction period of the 125 km long sea crossing tunnel, the total construction period of "completed tunnel" will be about 19 years (including 5 years of detailed offshore investigation) in Solution 1.  相似文献   

11.
The author gives an overview of the development of tunnels and underground engineering in China in the past two years, including railway tunnel, high speed railway tunnel, highway tunnel, metro tunnel, hydraulic tunnel and utility tunnel, and introduces some key and representative railway, highway and municipal tunnels projects, i.e. Muzhailing Tunnel on Lanzhou Chongqing Railway, Dangjinshan Tunnel on Dunhuang Golmud Railway, immersed tunnel of Hong Kong Zhuhai Macao Bridge, China Laos Railway Tunnel, Gaoligongshan Tunnel on Dali Ruili Railway, Yuelongmen Tunnel on Chengdu Lanzhou Railway, Tianshan Shengli Tunnel on Urumchi Yuli County High speed Railway, Shenzhen Zhongshan Passage, Su′ai Tunnel in Shantou, Ka Shuang Tunnel of Ertix River Water Diversion Project, Qianhai underground integrated hub in Shenzhen and underground integrated structure of Optics Valley Square in Wuhan. The author also introduces the development and progress in the fields of engineering investigation technology, BIM technology, mechanized and intelligent tunnel construction technology, shield/TBM manufacturing and remanufacturing technology, offshore immersed tube tunnel construction technology, non circular shield tunnel construction technology, tunnel big data platform construction technology, etc. According to the operation of series national strategies and planning such as Sichuan Tibet Railway, coordinated development of Beijing, Tianjin and Hebei, the Yangtze Economic belt, and the Guangdong Hong Kong Macao Greater Bay Area, following technical demands are proposed, namely, sea crossing tunnels, construction of complex and long distance tunnels, environmental protection technology for tunnel construction in ecologically vulnerable areas, development of large scale urban underground complexes, research and development of new materials in alpine environment, intelligent diagnosis of tunnel diseases and rapid repairs, intelligent disaster prevention of ultra long complicated tunnels and underground engineering, etc. Some thoughts and suggestions are put forward in two aspects of engineering construction management mode and mechanization supporting in combination with the development status of the industry.  相似文献   

12.
XIAO Mingqing 《隧道建设》2018,38(3):360-371
In the 21st century, the underwater tunnels have advanced rapidly in China. A large number of projects, completed or ongoing, have greatly promoted the advancement of underwater shield tunnel technologies in China and in the world. The development history of the underwater tunnels in China is summarized, and the technical challenges and breakthroughs encountered and achieved during the construction of many tunnels are presented, as represented by Nanjing Yangtze River Tunnel and Shiziyang Tunnel of Guangzhou Shenzhen Hong Kong High speed Railway. The characteristics and challenges of some representative underwater tunnels during construction, including Road Railway Yangtze River Tunnel in Sanyang Road, Shiziyang Tunnel of Foshan Dongguan Intercity Railway, Yangtze River Tunnel of Suzhou Nantong UHV Power Transmission and Transformation Project; and projects to be constructed, such as Pearl River Estuary Tunnel of Shenzhen Maoming Railway, Shantou Bay Subsea Tunnel of Shantou Shanwei High speed Railway, and Nanjing Heyan Road Yangtze River Tunnel, are presented as well. The development trend of China′s underwater shield tunnels, including from single soft soil formation to complex soil formation, from large diameter to super large diameter, from medium water pressure to high and ultra high water pressure, from ordinary to special and unfavorable geological conditions, from seismic regions with moderate intensity to those with high intensity, and from single construction method to combination of multiple methods, are analyzed. It is pointed out that the technical fields still require further study and innovation, and the areas still require further enhancement and innovation, such as the norms, codes, designs, constructions, equipment, materials and management.  相似文献   

13.
Now the R & D project of electric vehicle (EV) has already been listed as a key one in the science and technology program in the 9th Five-Year Plan of the Chinese government. Some enterprises and scientific institutions concerned have tried to work at this topic. There would be  相似文献   

14.
LI Zhipeng 《隧道建设》2019,39(9):1486-1493
In order to select a suitable ventilation scheme for a single tube extra long highway tunnel with two way traffic, as well as to solve problems in smoke exhaust and personnel evacuation in such tunnel, 3 ventilation schemes are proposed. According to the characteristics of Zhagaliang extra long highway tunnel, the 3 ventilation schemes include confluent ventilation with exhaust shaft and longitudinal ventilation with jet fans, parallel pilot tunnel forced ventilation network, and longitudinal ventilation with jet fans and sectional smoke exhaust by inclined shaft. The ventilation schemes are compared from several aspects, i.e. civil construction cost, initial investment of mechanical and electrical equipment, electricity cost during tunnel operation, ventilation control, stability of ventilation network, applicability, management and maintenance. Finally, the most suitable ventilation scheme is selected by comparing the advantages and disadvantages of each scheme, i.e. longitudinal ventilation with jet fans and sectional smoke exhaust by inclined shaft. Under the normal operation condition of the tunnel, longitudinal ventilation with jet fans is adopted in the main tunnel, and on demand ventilation can be realized. Smoke can be exhausted by inclined shaft in case of fire, which can solve the problem of smoke exhaust only in two sections by the parallel pilot tunnel. The parallel pilot tunnel can also be used for personnel evacuation and rescue.  相似文献   

15.
HONG Jing 《隧道建设》2018,38(3):424-433
The Optics Valley Plaza Complex is located in the middle part of Luoyu Cluster on the Luoyu Development Axis in East Lake Hi tech Development Zone in Wuhan. It is a significant node and channel linking the central downtown and East Lake National Independent Innovation Demonstration Zone. At present, the China′s rail transit construction and comprehensive development of urban underground space are in full bloom. By integrating the metro station and surrounding underground space, and the metro and ground and underground space, the urban area function and environment can be further improved. In this paper, the state of art and plan of the transportation of the Optics Valley Plaza are analyzed. The principle of "Guarantee the functional priority of the metro and build the most beautiful metro station" is regarded as the starting point; and the derivation process of the Optics Valley Plaza Complex scheme is summarized. The results can solve many design problems, i.e., spatial arrangement, traffic path organization and fire protection of the Complex in complicated conditions, and provide reference for similar projects in the future.  相似文献   

16.
WANG Le 《隧道建设》2018,38(9):1566-1572
In recent years, the Direct Pipe Construction Technology, as a new construction method and a new equipment in the international trenchless field, has gained advantages over the horizontal directional drilling (HDD) method where the construction site is limited, there is a big elevation drop between the launch and reception points, the burial depth of the pipeline is shallow, or the construction cost of the pipejacking is high. This method combines the characteristics of microtunneling and HDD. When the tunneling equipment is excavating, prefabricated pipes are laid by pipe thrusters simultaneously. The Wuding River Crossing Project of the 4 th Shaanxi Beijing Pipeline has a big elevation drop and a complex geology. The crossing project was carried out using the Direct Pipe method, which achieved a fast construction speed, simple construction process and less land occupation. The project has also achieved good economic and social benefits.  相似文献   

17.
LI Ning  LI Guoliang 《隧道建设》2018,38(3):481-493
Lanzhou Chongqing Railway is located in the uplift margin of the Tibetan Plateau, where the geological environment is very complicated and special. Based on numerical analysis and field tests, the physical and mechanical properties, micro structure, and complicated water related stability of the Tertiary sandstone are studied. A comprehensive dewatering system integrating deep surface wells and vacuum light well points in tunnel is used and the construction technique featured with advance reinforcement by horizontal jet grouting for the full face of aquiferous silty fine sand tunnels is invented to solve the problem of the Tertiary quick sand. In addition, the classification method for deformation potentiality in design and dynamic adjustment in construction of tunnels in high geostress soft rock is established, the deformation control technology combining active stress release and passive control according to the deformation mechanism is developed, an automatic real time monitoring system for operation is invented, and a complete technological system of design, construction, and operation management of soft rock tunnels is built. Moreover, the TBM equipment parameter design principles are put forward, the parallel lining and multi stage belt conveyor mucking system is researched, the phased ventilation technology is invented and thus the problem of safe and fast long distance construction by large diameter TBMs is solved. The technological achievements have filled in gaps and facilitated development of the tunnel construction technology.  相似文献   

18.
TAN Shunhui  SUN Heng 《隧道建设》2019,39(7):1073-1082
By analyzing the application cases of super large diameter shield machine in the world and taking China Shantou Gulf Tunnel and Shenzhen Chunfeng Tunnel construction for examples, the problems encountered in the research and development and construction are proposed and the key technologies to solve a series of problems, such as cutterhead maintenance and cutter changing technology under high soil and water pressure, boring in long fractured zone, are explored. More specifically, the technologies mainly involve cutterhead design, atmospheric cutter changing, main drive with telescopic and swinging function, reliable sealing system, anti blockage technique by applying double crushers, which are of great significance to the development and application of super large diameter shield machine.  相似文献   

19.
吴乐 《隧道建设》2010,30(4):465-468
No. 2 ventilation shaft of Kuocangshan tunnel on Zhuji Yongjia expressway has complex geologic condition, many construction difficulties and short construction schedule. In order to complete the project on time, the construction technology of "muck dropping shaft sinking and secondary enlarging excavation" is selected for the sinking of the shaft from several shaft sinking methods, including conventional one time shaft sinking method, "muck dropping shaft sinking and secondary enlarging excavation" method and raise boring method. The selected construction technology is presented in this paper. This technology not only achieves good results in construction schedule, construction safety and construction quality, but also reduces the construction cost.  相似文献   

20.
Vehicles are driven in highway systems. The growth of auto industry is based upon the foundation of previous development of highway constructions. Without sufficient and convenient highway transportation systems, the purchasing desire of people for automobiles will drop down. In this term, analysis on highway construction of China is helpful for understanding its future development of auto industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号