首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
为解决寒区水工隧洞围岩在低温作用下孔隙水相变引起的冻胀问题,以新疆布伦口水电站引水隧洞工程为依托,基于弹塑性力学理论,采用有限元建模分析方法,考虑低温水-冰相变引起的围岩热力学参数变化,使用有限元软件建立温度-渗流-应力耦合模型,计算围岩冻胀力弹塑性解析解及围岩瞬态温度场、冻胀应力和位移,分析冻深变化规律以及冻胀前后的应力变形规律。研究结果表明:1)受低温影响围岩孔隙水发生相变,冻结圈随时间推移向围岩内部移动,冻深随之增大,且冻结计算时间200d内最大冻深为2.04m;2)围岩受冻胀作用后的应力为0.392~0.527MPa,较冻胀前相比有一定幅度的增长;3)围岩水平位移变为-0.36mm,竖直位移由冻胀前的-9.59mm变为-8.41mm,围岩状态表现为水平收缩0.36mm、拱顶沉降1.18mm。  相似文献   

2.
为了解决寒区高速铁路长大隧道由于列车运行导致隧道内环境温度的上升,从而对隧道安全运营产生不利影响的问题,针对多年冻土地区隧道围岩温度场具有导热与对流换热耦合边界并伴有相变的非稳态温度场的特点,联合应用有限体积法及有限单元法,进行围岩温度场的有限元分析。结果表明,对于寒区高速铁路长大隧道而言,列车的高速运行和特长隧道通风散热不畅所导致的隧道内热量集聚,将使隧道空间温度在未来几十年内缓慢上升,虽然数值不大;但引起了隧道周围冻土区温度场较大的改变,增大了冻土的融化范围,加深了地基土的融化深度,必将对隧道结构的稳定性及高速列车的运行安全造成不利影响。  相似文献   

3.
为解决寒区隧道的冻害问题,通过对现有寒区隧道保温措施调查分析,以青海省红土山隧道为依托,建立寒区隧道围岩温度场有限元分析模型,引入隧道环境温度实际监测数据作为模型分析温度参数与边界条件。分析了不同环境温度条件下保温层厚度对隧道围岩温度场的影响,计算了不同隧道环境下应铺设的保温层厚度,得到了不同风速、风温条件下隧道围岩温度场变化规律,探讨了沿隧道纵向分区段设置不同厚度保温层的效果。研究成果可为寒区隧道的保温防冻提供理论依据,并可为类似工程提供借鉴。  相似文献   

4.
水下隧道最小覆盖层分析是设计过程中关系安全和经济的重要因素。以青岛胶州湾海底隧道工程为背景,建立不同覆盖层厚度的海底隧道渗流有限元计算模型,分别就隧道穿越f3-1破碎带时的涌水量、渗流速度、孔隙水压力以及注浆圈参数选取开展研究和讨论。研究表明: Park公式与有限元涌水量计算结果较为吻合;覆盖层厚度较大时,渗流最快区域出现在拱脚;覆盖层厚度较小时,拱脚和拱顶中心均渗流较快;边墙和底板的孔隙水压力变化梯度随覆盖层厚度的增加而增大,拱顶规律相反,并且覆盖层厚度超过22 m后孔隙水压力变化梯度基本保持不变;从可靠性和经济性两方面综合考虑注浆圈厚度和渗透系数参数选取,本文给出了注浆圈参数建议取值范围为: 注浆圈厚度为4~6 m,渗透系数为1×10-7~2×10-7 m/s。  相似文献   

5.
针对青藏铁路昆仑山隧道围岩多年冻土融化较多的问题,考虑水分迁移和冰水相变耦合影响,根据瞬态温度场问题的热量平衡控制微分方程和质量迁移方程,应用伽辽金法推导出了有限元计算公式并编制了计算软件。运用该计算软件对昆仑山隧道施工期间的融化进行了回冻预测分析。分析结果表明:保温材料对昆仑山隧道的回冻起着阻碍作用。在现场观测寒区隧道围岩的温度和应力时,必须考虑施工期间融化圈的影响,而且观测时间要长一些。否则,测量的温度和应力与隧道稳定后的温度和应力有较大的差异。  相似文献   

6.
为了解决寒区隧道温度场的预测问题,为寒区隧道抗冻设防提供指导,结合传热学、流体力学的基本方法,根据能量守恒原理,推导寒区隧道风流温度场的传热模型,并在此基础上,借助有限差分方法,探讨通风和围岩条件对寒区隧道温度场分布的作用规律。研究结果表明: 1)入口风温越低,风流速度越大以及断面越大,相同位置处洞内温度越低,这是由于进入洞内的冷空气更多,入口风温每降低5 ℃,同位置洞内风流温度平均降低3. 8 ℃; 2)风流温度决定了离壁面一定范围的围岩温度大小,风流温度越低,冻结深度与受到影响的围岩范围更大; 3)初始岩温越大,围岩温度分布曲线越陡峭,围岩导热系数则相反,且初始岩温每增加 5 ℃,冻结深度减少0. 24 m,受影响的围岩径向深度减少0. 32 m。  相似文献   

7.
季节性寒区隧道温度场随时间和空间不断变化,为明确季节性寒区隧道温度场的三维时空变化规律,为季节性寒区隧道防冻保温设计提供依据,依托某季节性寒区公路隧道设计了现场监测方案,在隧道洞口段一定范围内布置了5个环境温度场测试断面和2个围岩温度场测试断面,采用现场监测方法获取了隧道洞内环境温度场和围岩温度场随时间和空间的变化规律,在此基础上分别建立环境温度场和围岩温度场时空分布的统计模型,并推导了围岩冻结深度随时间和空间的变化规律。结果表明:隧道环境温度与时间和隧道进深具有三维变化关系,同一个监测断面温度与时间呈正弦函数变化,多个断面平均温度随着隧道进深呈近似线性变化,多个断面的温度振幅随隧道进深呈对数函数变化;隧道围岩径向温度与时间、隧道进深和围岩径向深度3个指标均有关系,同一断面围岩温度随时间也具有正弦变化特征,围岩温度幅值随围岩径向深度增大呈指数规律降低,达到一定深度后温度幅值为零,围岩平均温度呈对数规律变化;围岩冻结深度随时间呈周期性变化,随隧道进深增加呈减小趋势。研究结果可为季节性寒区隧道防冻保温设计提供指导。  相似文献   

8.
雷飞亚 《隧道建设》2019,39(Z1):245-256
为研究寒区隧道围岩在持续低温作用或冻融循环作用过程中,考虑岩体相变过程中多相体各组分变化引起的岩石热学参数差异对围岩温度场时空变化规律的影响,利用已有岩体未冻水含量研究成果,进一步推导不同孔隙率下岩体的热学参数计算公式。基于多孔介质模型建立考虑相变过程的围岩温度场计算模型,分析考虑潜热时不同孔隙率下围岩冻结缘的空间形态变化规律,及相变过程对温度场的影响。研究结果表明: 1)饱和岩体孔隙率越高,对岩体整体热学参数影响越大; 2)低温持续作用围岩时,冻结缘向围岩深处移动并不断变宽,其宽度与其深度呈线性关系; 3)饱和围岩孔隙率对冻结缘移动速度影响较大,但对其宽度基本无影响; 4)由于相变潜热,岩体在冻融循环过程中围岩温度时程曲线出现不对称阶梯状形态,且其阶梯形状宽度与围岩孔隙率呈正相关; 5)冻融循环过程中,升温及降温过程中冻结缘临近岩体温度梯度存在差异引起的传热效率不同直接导致升温、降温时程曲线的不对称性特征出现; 6)沿硐室围岩径向向外,各处围岩体的温度时程函数与加载的温度函数存在着振幅衰减和相位滞后的现象,且岩体孔隙率越高该现象越明显。  相似文献   

9.
寒区隧道围岩径向温度传播规律对隧道保温设计具有重要的指导意义。目前寒区温度场的研究多为现场实测与理论分析2个方面。为得到寒区隧道支护结构与围岩温度沿径向变化的规律,自行研制了温度模拟足尺试验仪器,并在此基础上开展了无隔热层与有隔热层2种条件下的模拟试验,分析了隧道围岩径向温度场变化规律。结果表明: 模拟环境温度为-12.5 ℃条件下,无隔热层时,90 h时环境温度降到-9 ℃,初喷混凝土层与围岩的交界面处的温度降低至0 ℃,当温度进一步降低时,围岩出现冻结状态,且随着时间的推移,冻结范围逐步扩大,192 h时环境温度降低到-12.5 ℃,各界面温度基本达到稳定; 设置4.5 cm隔热层时,由于隔热层作用,450 h时支护结构混凝土及围岩内的温度均大于0 ℃。结合试验最后确定了隔热层、隧道支护混凝土与围岩的导热系数与导温系数,结果可为寒区隧道保温设计提供依据。  相似文献   

10.
隧道围岩地温能受隧道的地形地貌、地质条件、隧道通风、洞口气象条件等多方面因素影响,本文利用寒区隧道温度场理论计算公式,定量分析上述因素对寒区隧道围岩地温的影响。  相似文献   

11.
针对高温多年冻土区隧道传热模型及温度场分布规律开展深入的理论分析、数值模拟和现场监测研究。首先,基于热传导理论,建立隧道衬砌和围岩径向传热模型,利用叠加原理和拉普拉斯变换法求得寒区隧道衬砌和围岩的温度场理论解;其次,建立洞内空气的传热微分方程,根据能量守恒原理,建立隧道纵向洞内空气与洞壁的气-固耦合传热模型,结合径向温度场理论解,提出多年冻土区隧道衬砌、围岩及洞内空气的三维温度场计算方法,该计算方法可考虑围岩、衬砌、保温层等多层传热介质及隧道沿洞轴线的不同埋深;最后,根据依托工程现场实测数据,反演围岩的热物性参数,并运用推导的隧道纵向传热模型和横向传热模型,分析姜路岭隧道不同冻土区内衬砌和围岩中的温度场分布规律。研究结果表明:在隧道径向,多年冻土和非冻土围岩温度都会随洞内气温的变化而产生波动,距离围岩表面越近,温度振幅越大,且热量在围岩径向传递过程中有一定的滞后性;在隧道纵向,在一年中最冷时刻,隧道衬砌及围岩温度呈“两端低,中间高”,此时姜路岭隧道围岩、二衬表面最高温度分别为-2.72℃,-7.80℃;在一年中最热时刻,衬砌温度呈“两端高,中间低”,此时姜路岭隧道二衬表面最低温度为1.92℃,但由于受围岩初始地温的影响,围岩表面的温度呈倒V形,最低温度为-1.22℃。  相似文献   

12.
《公路》2018,(11)
为探究多年冻土及季节性冻土区隧道环境及围岩温度的分布规律及其影响因素,依托吉林省图珲高速公路东南里隧道工程,现场开展隧道洞外、洞内气温测试及围岩温度测试,采用三角函数对温度测试结果进行拟合;通过ANSYS建立数值模型,对年平均气温、年温度振幅、隧道埋深和围岩的热物理参数及对流换热系数等温度场影响因素进行了正交试验。研究结果表明,隧道内气温随着距洞口距离的增大而增加,隧道洞口最大冻结深度不超过2.4m,隧道内温度及围岩温度随着时间的变化规律大致符合正弦曲线;年平均气温、年温度振幅、隧道埋深是隧道温度场的主要影响因素,而围岩的热物理参数是隧道温度场的次要影响因素。  相似文献   

13.
根据回头沟隧道的围岩温度实测数据,分析自洞口向内围岩温度与隧道外温度的变化趋势关系,以及同一断面距离洞壁不同深度的围岩的温度受硐室温度的影响大小。根据监测数据分析,确定季冻区回头沟隧道为防止冻融现象需做保温防护段的隧道长度为115 m。  相似文献   

14.
季节性寒区隧道在冬季通常气候条件恶劣,常面临冻害问题,进而对隧道的施工和运营的安全造成威胁。通过数值模拟探究了某季节性寒区隧道冬季施工期温度分布规律及围岩温度影响深度的影响因素。研究结果表明:隧道已施作二次衬砌区段和未施作二次衬砌区段的围岩温度影响深度分别为9m、10m,未施作二次衬砌区段围岩对温度变化较敏感。对于已施作二次衬砌区段,温度影响深度大致相同,并且随开挖长度增加而减小,随进口风速的增大而增大,随围岩与外界温差增大而增大。对于没有施作二次衬砌区段,围岩的温度影响深度随隧道开挖长度增加减小,随围岩与洞外温差增大而增大,但不受进口风速影响。  相似文献   

15.
为解决高地温隧道因高温引发的热害问题,以红河州建水—元阳高速公路的尼格隧道为依托,基于能量平衡原则设计各降温措施的适用区间。采用CFD软件模拟进行对照分析,研究尼格隧道现场采用降温措施的效果,构建高地温隧道综合降温体系。结果表明: 1)围岩温度T<32 ℃时采用单通风管道,在围岩温度32 ℃≤T≤40 ℃时采用双通风管道,在围岩温度40 ℃<T≤48 ℃时增设局部雾炮车喷雾降温,在围岩温度T>48 ℃增设冰块降温,且在实际应用中温降可达到理论计算值。2)增大通风量对降温速率的影响最大,可提升37.7%;冰块降温次之,可提升11.6%;喷雾降温提升效果最差,仅提升3.2%;但是对于降温幅度,冰块降温>增大通风量>喷雾降温。3)增大通风量可以加快洞内空气的置换流通,宜作为基础降温措施;冰块降温通过融化吸热可实现大规模的温降,可用在热害等级较高的隧道;喷雾降温可实现局部区域的降温、除尘和加湿,可作为掌子面辅助降温措施实现对隧道的局部降温。  相似文献   

16.
为探明高海拔特长隧道洞外低温大风的成因、特征及对洞内风场、围岩-结构温度温度场的影响,以国道317线雀儿山隧道为工程依托,采用气象站、手持风速仪、红外测温仪、埋入式多点铂电阻温度传感器等,对冬季隧道贯通前后进出口两端隧址区、洞内净空风速、风向、温度以及隧道轴向、径向的围岩-结构温度场进行现场实测,分析低温大风成因和特征、隧道贯通前后负温区范围、风速风向变化规律以及对洞口段和洞深部围岩-结构温度场的影响。研究结果表明:受高原大尺度大气环流产生的高原季风以及雀儿山两侧日照时间、地形引起的小尺度范围内自由大气热力差影响,隧址区冬季风速高、温度低;大风时段主要集中在14:00~21:00,平均风速达10 m·s-1,负温时段主要在19:00~8:30,隧道进、出口日最大气温差分别为23.5℃和28℃;隧道贯通前,进出口两端负温区段在860 m以内;贯通后,出口端主洞和平导负温区段为1 200,1 280 m,分别比进口端长了340,420 m;贯通前后,隧道深部最低风速分别为1.1,2.2 m·s-1,洞内风向由两端向洞内方向转化为主要由出口向进口方向;隧道洞口浅埋段围岩和衬砌结构径向负温范围在贯通前为1.20 m,贯通后为0.80 m,且在上述范围内温度变幅较大;低温大风对隧道深部的围岩温度影响不大,但对结构表面温度影响明显,由于变温区主要集中在二衬混凝土结构内部,因此要重视结构内部产生的冻胀作用。  相似文献   

17.
为探索隧道防排水体系与地下渗流场之间的关系,研制了施工及运营期矿山法隧道渗流模型试验系统,其整体尺寸为3 m(宽)×3 m(高)×2 m(厚),包括渗流模型箱、加固区模拟装置、排(涌)水量采集装置、移动式循环水箱装置和数据采集装置。该试验系统能够方便、准确地测试矿山法隧道施工及运营阶段的水压力、排(涌)水量和渗流场变化,并可根据试验需求对不同水头作用下的围岩、注浆圈、掌子面预注浆区域和初衬等进行配置和更换,最大限度地还原隧道及其周边渗流场状态。依托实际工程,采用该渗流模型试验系统和以控制渗透系数为基础的围岩-支护体系相似材料开展了不同注浆圈渗透系数下的渗流模型试验研究。结果表明:随着注浆圈渗透系数减小,渗流速度减慢,渗流时间大幅增加;运营期隧道二衬和注浆圈背后的特征点水压分布规律相似,注浆圈渗透系数越小其分担水压的效果越明显;对于非扰动开挖状态下隧道拱顶的特征点,开挖区靠近掌子面时其水压力值呈快速减小的趋势,但仍有动水压的作用,注浆圈渗透系数的改变对掌子面前方围岩中的渗流影响有限;对于非扰动开挖状态下隧道拱底的特征点,不同注浆圈渗透系数下,开挖区各测点的离散性较大,随注浆圈渗透系数增大,初衬背后的水压力值逐渐增加,而注浆圈背后的水压力值呈下降的趋势。  相似文献   

18.
肖泽荣 《隧道建设》2020,40(10):1471-1479
为解决富水地区隧道开挖后地下水过量排放导致水位下降,进而破坏植被的正常生长和生态平衡的问题,提出基于地下水生态平衡埋深确定隧道排水量的有效方法。依托福州市某在建公路隧道,根据工程水文地质学,同时结合地下水生态平衡埋深的概念,提出隧道允许排水量的计算方法。首先,利用地下水动力学中的面井法,建立单洞隧道的地下水渗流模型,揭示地下水排放量与地下水位降深的关系。其次,根据所提出的地下水渗流模型,在植被存活的前提下,得出满足地下水生态平衡埋深要求的隧道排水时间,继而得出地下水排放疏干漏斗的影响范围。然后,通过降雨入渗系数法得到在影响范围内降雨补给量W与总地下水排放量Qt进行比较。通过调整隧道每延米平均涌水量q,使W等于Qt,q即为隧道的最大允许地下水排放量。研究结果表明: 1)地下水生态平衡埋深一定时,随着隧道单位排水量的增大,隧道影响范围逐渐减小,降水补给总量也逐渐减小,排放总量逐渐增加,因此存在一个单位排放量使排水总量等于降雨补给量; 2)未考虑水分胁迫时间效应得到的排水量较考虑水分胁迫时间得到的排水量偏于保守。最终,确定在建隧道的排水量q=0.4 m3/(m·d)。  相似文献   

19.
为探究采用泥水盾构进行海底隧道建设时,海水易从开挖面进入泥水舱并与泥浆混合,导致泥浆泌水率等参数发生变化,进而影响泥膜的性质和开挖面的稳定性问题,配制不同海水添加量的泥浆,测试泥浆的泌水率、黏度和ζ电位等参数变化,并对泥膜的孔隙比、渗透系数等参数进行测试。试验表明: 1)海水的侵入明显增大了泥浆的泌水率,降低了泥浆的黏度和ζ电位。 2)随着海水添加量的增加,泥膜的孔隙比降低,渗透系数由10-9 cm/s增大到10-7 cm/s。 3)导致泥浆泌水率及泥膜渗透系数变化的根本原因是随着海水的添加,泥浆的ζ电位逐渐降低,泥浆颗粒间斥力减弱,宏观上表现为快速沉淀、析水; 同时,由于泥浆颗粒吸引的阳离子增多,结合水膜变薄,形成泥膜的有效孔隙变大,宏观上表现为渗透系数增大。  相似文献   

20.
首先,回顾我国不同时期典型寒区山岭交通隧道的气象条件、建设与运营期冻害现象及防治技术,展现我国寒区山岭交通隧道防冻技术的发展历程;其次,梳理寒区山岭交通隧道冻害发生的影响因素,从现场测试和耦合理论研究2个方面总结目前国内寒区山岭交通隧道温度场时空分布规律研究现状,分析列车活塞风和自然风对寒区铁路隧道温度场的不同影响,得出寒区铁路隧道温度场的分布规律;然后,从微观、细观和宏观层面深入论述土体、岩体和混凝土在水冰相变和水分渗透、迁移条件下发生的冻害损伤机制及研究现状,得出冻害防治应遵循减少地下水和控制洞内温度场2大技术原则和采取主动与被动2类冻害防治措施的结论;最后,展望我国寒区山岭交通隧道防冻技术在温度场规律、冻害机制、短周期冻融、防冻材料和清洁能源利用研究等方面的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号