首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Abstract

This paper revisits the classical transit scheduling problem and investigates the relationship between stop spacing and headway, considering realistic wait time and operable transit capacity. Headway and stop spacing are important determinants for planning a transit system, which influence the service level as well as the cost of operation. A mathematical model is developed, and the objective function is user travel time which is minimized by the optimized stop spacing and headway, subject to the constraints of operable fleet size and route capacity. Optimal stop spacing and headway solutions are obtained in a numerical example. Sensitivity analysis is conducted, and the effect of model parameters on user travel time is explored.  相似文献   

2.
A model is developed for jointly optimizing the characteristics of a rail transit route and its associated feeder bus routes in an urban corridor. The corridor demand characteristics are specified with irregular discrete distributions which can realistically represent geographic variations. The total cost (supplier plus user cost) of the integrated bus and rail network is minimized with an efficient iterative method that successively substitutes variable values obtained through classical analytic optimization. The optimized variables include rail line length, rail station spacings, bus headways, bus stop spacings, and bus route spacing. Computer programs are designed for optimization and sensitivity analysis. The sensitivity of the transit service characteristics to various travel time and cost parameters is discussed. Numerical examples are presented for integrated transit systems in which the rail and bus schedules may be coordinated.  相似文献   

3.
A mathematical model is developed to optimize social and fiscal sustainable operation of a feeder bus system considering realistic network and heterogeneous demand. The objective total profit is a nonlinear, mixed integer function, which is maximized by optimizing the number of stops, headway, and fare. The stops are located which maximize the ridership. The demand elasticity for the bus service is dependent on passengers' access distance, wait time, in‐vehicle time, and fare. An optimization algorithm is developed to search for the optimal solution that maximizes the profit. The modeling approach is applied to planning a bus transit system within Woodbridge, New Jersey. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Headway control strategies have been proposed as methods for correcting transit service irregularities and thereby reducing passenger wait times at stops. This paper addresses a particular strategy which can be implemented on high frequency routes (headways under 10–12 minutes), in which buses are held at a control stop to a threshold headway. An algorithm is developed which yields the optimal control stop location and optimal threshold headway with respect to a system wait function. The specification of the wait function is based on the development of several empirical models, including a headway variation model and an average delay time model at control stops. A conclusion is reached that the headway variation does not increase linearly along a route, a common assumption made in many previous studies. Furthermore, the location of the optimal control stop and threshold value are sensitive to the passenger boarding profile, as expected. The algorithm itself appears to have practical application to conventional transit operations.  相似文献   

5.
Improving the reliability of bus service has the potential to increase the attractiveness of public transit to current and prospective riders. An understanding of service reliability is necessary to develop strategies that help transit agencies provide better services. However, few studies have been conducted analyzing bus reliability in the metropolis of China. This paper presents an in-depth analysis of service reliability based on bus operational characteristics in Beijing. Three performance parameters, punctuality index based on routes (PIR), deviation index based on stops (DIS), and evenness index based on stops (EIS), are proposed for the evaluation of bus service reliability. Reliability involves routes, stops, punctuality, deviation, and evenness. The relationship among the three parameters is discussed using a numerical example. Subsequently, through a sampling survey of bus lines in Beijing, service reliability at the stop, route, and network levels are estimated. The effects of route length, headway, the distance from the stop to the origin terminal, and the use of exclusive bus lanes are also analyzed. The results indicate low service reliability for buses in Beijing and a high correlation between service reliability and route length, headway, distance from the stop to the origin terminal, and the provision of exclusive bus lanes.  相似文献   

6.
Ridership estimation is a critical step in the planning of a new transit route or change in service. Very often, when a new transit route is introduced, the existing routes will be modified, vehicle capacities changed, or service headways adjusted. This has made ridership forecasts for the new, existing, and modified routes challenging. This paper proposes and demonstrates a procedure that forecasts the ridership of all transit routes along a corridor when a new bus rapid transit (BRT) service is introduced and existing regular bus services are adjusted. The procedure uses demographic data along the corridor, a recent origin–destination survey data, and new and existing transit service features as inputs. It consists of two stages of transit assignment. In the first stage, a transit assignment is performed with the existing transit demand on the proposed BRT and existing bus routes, so that adjustments to the existing bus services can be identified. This transit assignment is performed iteratively until there is no adjustment in transit services. In the second stage, the transit assignment is carried out with the new BRT and adjusted regular bus services, but incorporates a potential growth in ridership because of the new BRT service. The final outputs of the procedure are ridership for all routes and route segments, boarding and alighting volumes at all stops, and a stop‐by‐stop trip matrix. The proposed ridership estimation procedure is applicable to a new BRT route with and without competing regular bus routes and with BRT vehicles traveling in dedicated lanes or in mixed traffic. The application of the proposed procedure is demonstrated via a case study along the Alameda Corridor in El Paso, Texas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The methodology presented here seeks to optimize bus routes feeding a major intermodal transit transfer station while considering intersection delays and realistic street networks. A model is developed for finding the optimal bus route location and its operating headway in a heterogeneous service area. The criterion for optimality is the minimum total cost, including supplier and user costs. Irregular and discrete demand distributions, which realistically represent geographic variations in demand, are considered in the proposed model. The optimal headway is derived analytically for an irregularly shaped service area without demand elasticity, with non‐uniformly distributed demand density, and with a many‐to‐one travel pattern. Computer programs are designed to analyze numerical examples, which show that the combinatory type routing problem can be globally optimized. The improved computational efficiency of the near‐optimal algorithm is demonstrated through numerical comparisons to an optimal solution obtained by the exhaustive search (ES) algorithm. The CPU time spent by each algorithm is also compared to demonstrate that the near‐optimal algorithm converges to an acceptable solution significantly faster than the ES algorithm.  相似文献   

8.
To improve the accessibility of transit system in urban areas, this paper presents a flexible feeder transit routing model that can serve irregular‐shaped networks. By integrating the cost efficiency of fixed‐route transit system and the flexibility of demand responsive transit system, the proposed model is capable of letting operating feeder busses temporarily deviate from their current route so as to serve the reported demand locations. With an objective of minimizing total bus travel time, a new operational mode is then proposed to allow busses to serve passengers on both street sides. In addition, when multiple feeder busses are operating in the target service area, the proposed model can provide an optimal plan to locate the nearest one to response to the demands. A three‐stage solution algorithm is also developed to yield meta‐optimal solutions to the problem in a reasonable amount of time by transforming the problem into a traveling salesman problem. Numerical studies have demonstrated the effectiveness of the proposed model as well as the heuristic solution approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Analytic models are developed for optimizing bus services with time dependence and elasticity in their demand characteristics. Some supply parameters, i.e. vehicle operating costs and speeds are also allowed to vary over time. The multiple period models presented here allow some of the optimized system characteristics (e.g. route structure) to be fized at values representing the best compromise over different time periods, while other characteristics (e.g. service headways) may be optimized within each period. In a numerical example the demand is assumed to fluctuate over a daily cycle (e.g. peak, offpeak and night), although the same models can also be used for other cyclical or noncyclical demand variations over any number of periods. Models are formulated and compared for four types of conditions, which include steady fixed demand, cyclical fixed demand, steady equilibrium demand and cyclical equilibrium demand. When fixed demand is assumed, the optimization objective is minimum total system cost, including operator cost and user cost, while operator profit and social welfare are the objective functions maximized for equilibrium demand. The major results consist of closed form solutions for the route spacings, headways, fares and costs for optimized feeder bus services under various demand conditions. A comparison of the optimization results for the four cases is also presented. When demand and bus operating characteristics are allowed to vary over time, the optimal functions are quite similar to those for steady demand and supply conditions. The optimality of a constant ratio between the headway and route spacing, which is found at all demand densities if demand is steady, is also maintained with a multi-period adjustment factor in cyclical demand cases, either exactly or with a relatively negligible approximation. These models may be used to analyze and optimize fairly complex feeder or radial bus systems whose demand and supply characteristics may vary arbitrarily over time.  相似文献   

10.
Current analytic models for optimizing urban bus transit systems tend to sacrifice geographic realism and detail in order to obtain their solutions. The models presented here shows how an optimization approach can be successful without oversimplifying spatial characteristics and demand patterns of urban areas and how a grid bus transit system in a heterogeneous urban environment with elastic demand is optimized. The demand distribution over the service region is discrete, which can realistically represent geographic variation. Optimal network characteristics (route and station spacings), operating headways and fare are found, which maximize the total operator profit and social welfare. Irregular service regions, many‐to‐many demand patterns, and vehicle capacity constraints are considered in a sequential optimization process. The numerical results show that at the optima the operator profit and social welfare functions are rather flat with respect to route spacing and headway, thus facilitating the tailoring of design variables to the actual street network and particular operating schedule without a substantial decrease in profit. The sensitivities of the design variables to some important exogenous factors are also presented.  相似文献   

11.
A mathematical model is developed in this paper to improve the accessibility of a bus service. To formulate the optimization model, a segment of a bus route is given, on which a number of demand entry points are distributed realistically. The objective total cost function (i.e. the sum of supplier and user costs) is minimized by optimizing the number and locations of stops, subject to non‐additive users' value of time. A numerical example is designed to demonstrate the effectiveness of the method thus developed to optimize the bus stop location problem. The sensitivity of the total cost to various parameters (e.g. value of users' time, access speed, and demand density) and the effect of the parameters on the optimal stop locations are analyzed and discussed.  相似文献   

12.
Due to the stochastic nature of traffic conditions and demand fluctuations, it is a challenging task for operators to maintain reliable services, and passengers often suffer from longer travel times. A failure to consider this issue while planning bus services may lead to undesirable results, such as higher costs and a deterioration in level of service. Considering headway variation at route stops, this paper develops a mathematical model to optimize bus stops and dispatching headways that minimize total cost, consisting of both user and operator costs. A Genetic Algorithm is applied to search for a cost-effective solution in a real-world case study of a bus transit system, which improves service reliability in terms of a reduced coefficient of variation of headway.  相似文献   

13.
ABSTRACT

Many people use public transportation systems to reach their destination, while others use personal vehicles. Poor transportation systems do not attract ridership. Therefore, the usage of passenger cars increases, and traffic and environmental conditions deteriorate. Efficient public transportation has been recognized as one of the potential ways of mitigating air pollution, reducing energy consumption, improving mobility and alleviating traffic congestion. The objective of this study is to optimize a bus feeder service that provides the shuttle service between a recreation center (e.g. Sandy Hook, NJ) and a major public transportation facility, subject to site-specific constraints such as vehicle schedules, bus availability, service capacity and budget. The decision variables include bus headway, vehicle size and route choice. The solution methodology integrating both analytical and numerical techniques is developed, which optimizes the decision variables. Finally, the proposed solution methodology is applied to a case study. Numerical results, including optimal solutions and sensitivity analyses, are presented while the level of coordination between the feeder service and a major transportation service is discussed.  相似文献   

14.
This paper presents a model-based multiobjective control strategy to reduce bus bunching and hence improve public transport reliability. Our goal is twofold. First, we define a proper model, consisting of multiple static and dynamic components. Bus-following model captures the longitudinal dynamics taking into account the interaction with the surrounding traffic. Furthermore, bus stop operations are modeled to estimate dwell time. Second, a shrinking horizon model predictive controller (MPC) is proposed for solving bus bunching problems. The model is able to predict short time-space behavior of public transport buses enabling constrained, finite horizon, optimal control solution to ensure homogeneity of service both in time and space. In this line, the goal with the selected rolling horizon control scheme is to choose a proper velocity profile for the public transport bus such that it keeps both timetable schedule and a desired headway from the bus in front of it (leading bus). The control strategy predicts the arrival time at a bus stop using a passenger arrival and dwell time model. In this vein, the receding horizon model predictive controller calculates an optimal velocity profile based on its current position and desired arrival time. Four different weighting strategies are proposed to test (i) timetable only, (ii) headway only, (iii) balanced timetable - headway tracking and (iv) adaptive control with varying weights. The controller is tested in a high fidelity traffic simulator with realistic scenarios. The behavior of the system is analyzed by considering extreme disturbances. Finally, the existence of a Pareto front between these two objectives is also demonstrated.  相似文献   

15.
In recent years, several transit agencies have been trying to be more competitive with the automobile to attract choice riders. Transit agencies can only be competitive if they can provide services that are reliable, have a short access and egress time, and have run times that are comparable to automobiles. Several transit agencies try to be competitive through offering faster service, such as limited-stop (express) bus service. This study uses AVL and APC data, in addition to a disaggregate data obtained from a travel behavior survey, to select stops and estimate run times for a new limited-stop service that will run parallel to a heavily used bus route (67 Saint-Michel) in Montréal, Canada. Three different scenarios are developed based on theory and practice to select stops to be incorporated in the new limited service. The time savings for each scenario are then evaluated as a range and a fourth scenario is developed. A limited-stop service is recommended based on selecting stops serving both directions of the route, major activity points and stop spacing. This study shows that implementing a limited-stop service would yield substantial time savings for both, the new limited service and the existing regular service running in parallel.  相似文献   

16.
Public transit structure is traditionally designed to contain fixed bus routes and predetermined bus stations. This paper presents an alternative flexible-route transit system, in which each bus is allowed to travel across a predetermined area to serve passengers, while these bus service areas collectively form a hybrid “grand” structure that resembles hub-and-spoke and grid networks. We analyze the agency and user cost components of this proposed system in idealized square cities and seek the optimum network layout, service area of each bus, and bus headway, to minimize the total system cost. We compare the performance of the proposed transit system with those of comparable systems (e.g., fixed-route transit network and taxi service), and show how each system is advantageous under certain passenger demand levels. It is found out that under low-to-moderate demand levels, the proposed flexible-route system tends to have the lowest system cost.  相似文献   

17.

In urban areas where transit demand is widely spread, passengers may be served by an intermodal transit system, consisting of a rail transit line (or a bus rapid transit route) and a number of feeder routes connecting at different transfer stations. In such a system, passengers may need one or more transfers to complete their journey. Therefore, scheduling vehicles operating in the system with special attention to reduce transfer time can contribute significantly to service quality improvements. Schedule synchronization may significantly reduce transfer delays at transfer stations where various routes interconnect. Since vehicle arrivals are stochastic, slack time allowances in vehicle schedules may be desirable to reduce the probability of missed connections. An objective total cost function, including supplier and user costs, is formulated for optimizing the coordination of a general intermodal transit network. A four-stage procedure is developed for determining the optimal coordination status among routes at every transfer station. Considering stochastic feeder vehicle arrivals at transfer stations, the slack times of coordinated routes are optimized, by balancing the savings from transfer delays and additional cost from slack delays and operating costs. The model thus developed is used to optimize the coordination of an intermodal transit network, while the impact of a range of factors on coordination (e.g., demand, standard deviation of vehicle arrival times, etc) is examined.  相似文献   

18.
This paper proposes an analytical model for investigating transit technology selection problem from a perspective of transit authority. Given a transit technology alternative (e.g., metro, light rail transit, or bus rapid transit), the proposed model aims to maximize the social welfare of the transit system by determining the optimal combination of transit line length, number of stations, station location (or spacing), headway, and fare. In the proposed model, the effects of passenger demand elasticity and capacity constraint are explicitly considered. The properties of the model are examined analytically, and a heuristic solution procedure for determining the model solution is presented. By comparing the optimized social welfare for different transit technology alternatives, the optimal transit technology solution can be obtained together with critical population density. On the basis of a simple population growth rate formula, optimal investment timing of a new transit technology can be estimated. The proposed methodology is illustrated in several Chinese cities. Insightful findings are reported on the interrelation among transit technology selection, population density, transit investment cost, and transit line parameter design as well as the comparison between social welfare maximization and profit maximization regimes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
A number of studies have shown that in addition to travel time and cost as the common influences on mode, route and departure time choices, travel time variability plays an increasingly important role, especially in the presence of traffic congestion on roads and crowding on public transport. The dominant focus of modelling and implementation of optimal pricing that incorporates trip time variability has been in the context of road pricing for cars. The main objective of this paper is to introduce a non-trivial extension to the existing literature on optimal pricing in a multimodal setting, building in the role of travel time variability as a source of disutility for car and bus users. We estimate the effect of variability in travel time and bus headway on optimal prices (i.e., tolls for cars and fares for buses) and optimal bus capacity (i.e., frequencies and size) accounting for crowding on buses, under a social welfare maximisation framework. Travel time variability is included by adopting the well-known mean–variance model, using an empirical relationship between the mean and standard deviation of travel times. We illustrate our model with an application to a highly congested corridor with cars, buses and walking as travel alternatives in Sydney, Australia. There are three main findings that have immediate policy implications: (i) including travel time variability results in higher optimal car tolls and substantial increases in toll revenue, while optimal bus fares remain almost unchanged; (ii) when bus headways are variable, the inclusion of travel time variability as a source of disutility for users yields higher optimal bus frequencies; and (iii) including both travel time variability and crowding discomfort leads to higher optimal bus sizes.  相似文献   

20.
Bus rapid transit system is designed to provide high‐quality and cost‐efficient passenger transportation services. In order to achieve this design objective, effective scheduling strategies are required. This research aims at improving the operation efficiency and service quality of a BRT system through integrated optimization of its service headways and stop‐skipping strategy. Based on cost analysis for both passengers and operation agencies, an optimization model is established. A genetic algorithms based algorithm and an application‐oriented solution method are developed. Beijing BRT Line 2 has been chosen as a case study, and the effectiveness of the optimal headways with stop‐skipping services under different demand levels has been analyzed. The results has shown that, at a certain demand level, the proposed operating strategy can be most advantageous for passengers with an accepted increase of operating costs, under which the optimum headway is between 3.5 and 5.5 min for stop‐skipping services during the morning peak hour depending on the demand with the provision of stop‐skipping services. The effectiveness of the optimal headways with stop‐skipping services is compared with those of existing headways and optimal headways without stop‐skipping services. The results show that operating strategies under the optimal headways with stop‐skipping services outperforms the other two operating strategies with respect to total costs and in‐vehicle time for passengers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号