首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 622 毫秒
1.
通过对70%低地板车辆进行动力学建模,仿真得出车辆正常运行时二系结构与车体连接处的力和两处下铰力,以此作为激励对车体结构有限元模型进行频率响应计算。用计算得到的车体位移激励车体声学有限元模型,得到车内声学模态、声场分布和ISO标准场点响应。结果显示,车体在几个特定频率下的声压级超出了车内噪声指标。通过对几个特定频率下的各板件声场贡献量计算,得到车顶正贡献量较大,可提供给厂方进行结构优化。同时,根据结构模态、声学模态计算结果对车体下吊设备频率提出了建议。  相似文献   

2.
根据地铁A型铝合金车辆的车体结构建立车内声场计算模型,利用声传递向量技术进行噪声源分析.结果表明:车体地板中部区域、车顶中部区域以及右侧墙中部附近区域对车内声学的贡献较大,是车内的主要噪声源.在增加这些区域车体的壁板厚度后,车内的噪声得到明显地控制.利用Zwicker法对车内噪声响度的计算结果表明:车体壁板增厚后,降低的噪声主要集中在100 Hz频段以下,而在人耳更为敏感的150~350Hz频段上,噪声的降低幅度相对较小.  相似文献   

3.
运营环境对地铁车内的噪声值起着主要作用,地铁在隧道环境下运行会导致车内噪声提高,声舒适度迅速下降,不仅使乘客无法听清广播内容错过下车地点,而且严重影响乘客的身心健康。目前隧道环境对车内声舒适度的影响仍缺少相关调研和理论研究。基于此,对国内某条地铁线路进行车内外噪声测量,在实测基础上仅考虑轮轨声源对车内的空气传声,并基于声线跟踪法在Odeon软件中建立隧道-车体声学响应模型,进一步研究隧道铺设吸声材料对车内声舒适度的影响,从而得出如下结论:相较明线,隧道区段车内噪声总值增加7 dB(A)左右,乘客正常交流距离仅为0.1~0.2 m,声舒适度极差;相比隧道壁,在轨道板铺设吸声材料车内降噪效果较好。隧道内铺满吸声材料可降低车内噪声值约6 d B(A),乘客正常交流距离增至0.72 m,声舒适度得到极大改善,仿真结果可为实际工程应用提供一定的参考。  相似文献   

4.
地铁车辆车内噪声直接影响旅客乘坐舒适性。掌握车内噪声特性,可以为地铁车辆车体结构声学设计及车内声学环境优化提供理论参考。依据标准测试不同运行速度下铝合金地铁车辆车内噪声,获得车内噪声频谱特性。根据能够反映主观听觉作用的心理声学理论,进行车内噪声特性响度分析,比较声压和响度评价车内噪声的差异,并在此基础上提出车内降噪的频率范围。  相似文献   

5.
针对某地铁车内噪声超标问题,从车辆、轮轨、线路三个方面展开研究,系统测试分析了车辆的牵引、空调系统,车辆、轨道结构,轮轨粗糙度等因素对车内噪声的影响特性。研究表明,牵引、空调系统、不同轨道形式对运行车辆车内噪声影响较小。车内噪声的显著频带为 400~800Hz、1105Hz,与车轮非圆没有直接关系;1105Hz 与钢轨打磨后磨痕有关。车内噪声主要与以下三个因素有关:一是透射噪声,车辆内移门存在漏风问题,车外噪声传入车内;二是结构传声,轮轨或轨道以上频段的振动激励经过轴箱-构架-车体传递,进而激励车内内装等结构振动产生辐射噪声;三是在以上频段,不同轨道的垂向衰减率低于标准规定下限值。此研究对地铁车辆降噪有一定的参考价值。  相似文献   

6.
针对某地铁车内噪声超标问题,从车辆、轮轨、线路三个方面展开研究,系统测试分析了车辆的牵引、空调系统,车辆、轨道结构,轮轨粗糙度等因素对车内噪声的影响特性。研究表明,牵引、空调系统、不同轨道形式对运行车辆车内噪声影响较小。车内噪声的显著频带为 400~800Hz、1105Hz,与车轮非圆没有直接关系;1105Hz 与钢轨打磨后磨痕有关。车内噪声主要与以下三个因素有关:一是透射噪声,车辆内移门存在漏风问题,车外噪声传入车内;二是结构传声,轮轨或轨道以上频段的振动激励经过轴箱-构架-车体传递,进而激励车内内装等结构振动产生辐射噪声;三是在以上频段,不同轨道的垂向衰减率低于标准规定下限值。此研究对地铁车辆降噪有一定的参考价值。  相似文献   

7.
针对某地铁车内噪声超标问题,从车辆、轮轨、线路三个方面展开研究,系统测试分析了车辆的牵引、空调系统,车辆、轨道结构,轮轨粗糙度等因素对车内噪声的影响特性。研究表明,牵引、空调系统、不同轨道形式对运行车辆车内噪声影响较小。车内噪声的显著频带为 400~800Hz、1105Hz,与车轮非圆没有直接关系;1105Hz 与钢轨打磨后磨痕有关。车内噪声主要与以下三个因素有关:一是透射噪声,车辆内移门存在漏风问题,车外噪声传入车内;二是结构传声,轮轨或轨道以上频段的振动激励经过轴箱-构架-车体传递,进而激励车内内装等结构振动产生辐射噪声;三是在以上频段,不同轨道的垂向衰减率低于标准规定下限值。此研究对地铁车辆降噪有一定的参考价值。  相似文献   

8.
利用VA One软件对某A型地铁车辆车内噪声进行预测,并根据预测结果提出减振降噪措施。建立某A型地铁车辆的统计能量分析模型,通过施加轮轨噪声源激励载荷,对该车辆车内噪声水平进行预测,为减振降噪提供依据。根据车内声场分布,利用对车辆地板面铺设阻尼减振材料以及多孔吸声材料等措施控制车内噪声。结果表明:阻尼减振材料和吸声材料分别可降噪2 d B(A)和5.17 d B(A),而混合两种材料的双层吸声降噪方式可降噪6.19 d B(A)。  相似文献   

9.
以A型地铁车辆为研究对象,利用SYSNOISE软件计算了车内声场的声学模态。结果表明,车内声场的各阶模态形状基本上呈前后、左右和上下方向对称分布,车内声场共鸣频率和模态形状主要由其几何形状决定。  相似文献   

10.
为分析预测高速列车车内结构噪声,本文基于声固耦合理论,结合有限元法(FE)、统计能量分析法(SEA)的优点,采用FE-SEA混合法建立车体-车内声腔耦合车内结构噪声预测模型,分析在垂向二系悬挂力作用下车体结构振动响应、0~500Hz频段车内结构噪声及车体各组成部分对车内结构噪声的贡献度。分析结果表明:混合FE-SEA模型能够准确预测车体结构振动及车内结构噪声,具有较高的计算效率;在垂向二系悬挂力作用下,车内各部位噪声值相差较小,其变化趋势与二系悬挂力变化趋势一致;车体振动在低频段较明显,车体底板振动加速度、速度最大,对车内结构噪声的影响最大,可通过对底板采取减振措施降低车内结构噪声。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号