首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A moving bottleneck   总被引:1,自引:0,他引:1  
Suppose that a vehicle or convoy enters a two-lane unidirectional roadway and travels at a velocity v* less than the prevailing traffic. This moving bottleneck may cause a queue to form as vehicles try to pass the obstruction. It is shown that by going to a moving coordinate system traveling at velocity v* the analysis of this can be transformed into a corresponding analysis of flow past a stationary bottleneck. The theory is then extended to investigate possible consequences of trucks on grades.  相似文献   

2.
In traffic flow with naturalistic driving only, stimulus information pre-dominantly comes from the preceding vehicles with drivers occasionally responding to the following vehicles through the inspection of rear-view mirrors. Such one-sided information propagation may potentially be altered in future connected vehicle environment. This brings new motivations of modeling vehicle dynamics under bi-directional information propagation. In this study, stemming from microscopic bi-directional car-following models, a continuum traffic flow model is put forward that incorporates the bi-directional information impact macroscopically but can still preserve the anisotropic characteristics of traffic flow and avoid non-physical phenomenon such as wrong-way travels. We then analyze the properties of the continuum model and respectively illustrate the condition that guarantees the anisotropy, eradicates the negative travel speed, preserves the traveling waves and keeps the linear stability. Through a series of numerical experiments, it is concluded that (1) under the bi-directional looking context only when the backward weight ratio belongs to an appropriate range then the anisotropic property can be maintained; (2) forward-propagating traffic density waves and standing waves emerge with the increasing consideration ratio for backward information; (3) the more aggressive driving behaviors for the forward direction can delay the backward-propagating and speed up the forward-propagating of traffic density waves; (4) positive holding effect and negative pushing effect of backward looking can also be observed under different backward weight ratios; and (5) traffic flow stability varies with different proportion of backward traffic information contribution and such stability impact is sensitive to the initial traffic density condition. This proposed continuum model may contribute to future development of traffic control and coordination in future connected vehicle environment.  相似文献   

3.
This study aims to determine whether ramp meters increase the capacity of active freeway bottlenecks. The traffic flow characteristics at 27 active bottlenecks in the Twin Cities have been studied for seven weeks without ramp metering and seven weeks with ramp metering. A methodology for systematically identifying active freeway bottlenecks in a metropolitan area is proposed, which relies on two occupancy threshold values and is compared to an established diagnostic method – transformed cumulative count curves. A series of hypotheses regarding the relationships between ramp metering and the capacity of active bottlenecks are developed and tested against empirical traffic data. It is found that meters increase the bottleneck capacity by postponing and sometimes eliminating bottleneck activations, accommodating higher flows during the pre-queue transition period, and increasing queue discharge flow rates after breakdown. Results also suggest that flow drops after breakdown and the percentage flow drops at various bottlenecks follow a normal distribution. The implications of these findings on the design of efficient ramp control strategies, as well as future research directions, are discussed.  相似文献   

4.
Variable speed limit (VSL) schemes are developed based on the Kinematic Wave theory to increase discharge rates at severe freeway bottlenecks induced by non-recurrent road events such as incidents or work zones while smoothing speed transition. The main control principle is to restrict upstream demand (in free-flow) progressively to achieve three important objectives: (i) to provide gradual speed transition at the tail of an event-induced queue, (ii) to clear the queue around the bottleneck, and (iii) to discharge traffic at the stable maximum flow that can be sustained at the bottleneck without breakdown. These control objectives are accomplished without imposing overly restrictive speed limits. We further provide remedies for (a) underutilized bottleneck capacity due to underestimated stable maximum flow and (b) a re-emergent queue at the bottleneck due to an overestimated stable maximum flow. We analytically formulate the reductions in total delay in terms of control parameters to provide an insight into the system performance and sensitivity. The results from the parameter analysis suggest that significant delay savings can be realized with the proposed VSL control strategies.  相似文献   

5.
Cooperative Adaptive Cruise Control (CACC) systems have the potential to increase roadway capacity and mitigate traffic congestion thanks to the short following distance enabled by inter-vehicle communication. However, due to limitations in acceleration and deceleration capabilities of CACC systems, deactivation and switch to ACC or human-driven mode will take place when conditions are outside the operational design domain. Given the lack of elaborate models on this interaction, existing CACC traffic flow models have not yet been able to reproduce realistic CACC vehicle behaviour and pay little attention to the influence of system deactivation on traffic flow at bottlenecks. This study aims to gain insights into the influence of CACC on highway operations at merging bottlenecks by using a realistic CACC model that captures driver-system interactions and string length limits. We conduct systematic traffic simulations for various CACC market penetration rates (MPR) to derive free-flow capacity and queue discharge rate of the merging section and compare these to the capacity of a homogeneous pipeline section. The results show that an increased CACC MPR can indeed increase the roadway capacity. However, the resulting capacity in the merging bottleneck is much lower than the pipeline capacity and capacity drop persists in bottleneck scenarios at all CACC MPR levels. It is also found that CACC increases flow heterogeneity due to the switch among different operation modes. A microscopic investigation of the CACC operational mode and trajectories reveals a close relation between CACC deactivation, traffic congestion and flow heterogeneity.  相似文献   

6.
The well-known feedback ramp metering algorithm ALINEA can be applied for local ramp metering or included as a key component in a coordinated ramp metering system. ALINEA uses real-time occupancy measurements from the ramp flow merging area that may be at most a few hundred meters downstream of the metered on-ramp nose. In many practical cases, however, bottlenecks with smaller capacities than the merging area may exist further downstream, which suggests using measurements from those downstream bottlenecks. Recent theoretical and simulation studies indicate that ALINEA may lead to poorly damped closed-loop behavior in this case, but PI-ALINEA, a suitable Proportional-Integral (PI) extension of ALINEA, can lead to satisfactory control performance. This paper addresses the same local ramp-metering problem in the presence of far-downstream bottlenecks, with a particular focus on the employment of PI-ALINEA to tackle three distinct cases of bottleneck that may often be encountered in practice: (1) an uphill case; (2) a lane-drop case; and (3) an un-controlled downstream on-ramp case. Extensive simulation studies are conducted on the basis of a macroscopic traffic flow model to show that ALINEA is not capable of carrying out ramp metering in these bottleneck cases, while PI-ALINEA operates satisfactorily in all cases. A field application example of PI-ALINEA is also reported with regard to a real case of far downstream bottlenecks. With its control parameters appropriately tuned beforehand, PI-ALINEA is found to be universally applicable, with little fine-tuning required for field applications.  相似文献   

7.
为准确把握轨道交通网络化运营的新态势和新要求,力求轨道交通系统在大客流下做到运输能力和服务水平的供需匹配,需对轨道交通网络的关键瓶颈进行有效识别和疏解。本文借鉴交通渗流理论,提出了限制网络整体服务水平和连通效能的动态服务瓶颈的识别方法,该方法综合考虑了城市轨道交通系统的网络特性、客流特性和服务特性。其中针对区间服务水平状态,该方法提出了定量评定的复合指标模型。以成都地铁线网为案例,基于实际客流运营数据,构建动态网络,识别服务瓶颈,验证了方法的适用性和准确性,对城市轨道交通系统运营管理有实际指导意义。  相似文献   

8.
This paper proves that in traffic flow model calibration and validation the cumulative sum of a variable has to be preferred to the variable itself as a measure of performance. As shown through analytical relationships, model residuals dynamics are preserved if discrepancy measures of a model against reality are calculated on a cumulative variable, rather than on the variable itself. Keeping memory of model residuals occurrence times is essential in traffic flow modelling where the ability of reproducing the dynamics of a phenomenon – as a bottleneck evolution or a vehicle deceleration profile – may count as much as the ability of reproducing its order of magnitude. According to the aforesaid finding, in a car-following models context, calibration on travelled space is more robust than calibration on speed or acceleration. Similarly in case of macroscopic traffic flow models validation and calibration, cumulative flows are to be preferred to flows. Actually, the findings above hold for any dynamic model.  相似文献   

9.
It is essential for local traffic jurisdictions to systematically spot freeway bottlenecks and proactively deploy appropriate congestion mitigation strategies. However, diagnostic results may be influenced by unreliable measurements, analysts’ subjective knowledge and day-to-day traffic pattern variations. In order to suitably address these uncertainties and imprecise data, this study proposes a fuzzy-logic-based approach for bottleneck severity diagnosis in urban sensor networks. A dynamic bottleneck identification model is first proposed to identify bottleneck locations, and a fuzzy inference approach is then proposed to systematically diagnose the severities of the identified recurring and non-recurring bottlenecks by incorporating expert knowledge of local traffic conditions. Sample data over a 1-month period on an urban freeway in Northern Virginia was used as a case study for the analysis. The results reveal that the proposed approach can reasonably determine bottleneck severities and critical links, accounting for both spatial and temporal factors in a sensor network.  相似文献   

10.
The capacity drop phenomenon, which reduces the maximum bottleneck discharge rate following the onset of congestion, is a critical restriction in transportation networks that produces additional traffic congestion. Consequently, preventing or reducing the occurrence of the capacity drop not only mitigates traffic congestion, but can also produce environmental and traffic safety benefits. In addressing this problem, the paper develops a novel bang-bang feedback control speed harmonization (SH) or Variable Speed Limit (VSL) algorithm, that attempts to prevent or delay the breakdown of a bottleneck and thus reduce traffic congestion. The novelty of the system lies in the fact that it is both proactive and reactive in responding to the dynamic stochastic nature of traffic. The system is proactive because it uses a calibrated fundamental diagram to initially identify the optimum throughput to maintain within the SH zone. Furthermore, the system is reactive (dynamic) because it monitors the traffic stream directly upstream of the bottleneck to adjustment the metering rate to capture the dynamic and stochastic nature of traffic. The steady-state traffic states in the vicinity of a lane-drop bottleneck before and after applying the SH algorithm is analyzed to demonstrate the effectiveness of the algorithm in alleviating the capacity drop. We demonstrate theoretically that the SH algorithm is effective in enhancing the bottleneck discharge rate. A microscopic simulation of the network using the INTEGRATION software further demonstrates the benefits of the algorithm in increasing the bottleneck discharge rate, decreasing vehicle delay, and reducing vehicle fuel consumption and CO2 emission levels. Specifically, compared with the base case without the SH algorithm, the advisory speed limit increases the bottleneck discharge rate by approximately 7%, reduces the overall system delay by approximately 20%, and reduces the system-wide fuel consumption and CO2 emission levels by 5%.  相似文献   

11.
Bus rapid transit (BRT) is a popular strategy to increase transit attraction because of its high‐capacity, comfortable service, and fast travel speed with the exclusive right‐of‐way. Various engineering designs of right‐of‐way and the violation enforcement influence interactions between BRT and general traffic flows. An empirical assessment framework is proposed to investigate traffic congestion and lane‐changing patterns at one typical bottleneck along a BRT corridor. The BRT bottleneck consists of bus lane, BRT station, video enforcement zone, and transit signal priority intersection. We analyze oblique cumulative vehicle counts and oblique cumulative lane‐changing maneuvers extracted from videos. The cumulative vehicle counts method widely applied in revealing queueing dynamics at freeway bottlenecks is extended to an urban BRT corridor. In the study site, we assume four lane‐changing patterns, three of which are verified by the empirical measurements. Investigations of interactions between buses and general traffic show that abnormal behaviors (such as lane violations and slow moving of the general traffic) induce 16% reduction in the saturation rate of general traffic and 17% increase in bus travel time. Further observations show that the BRT station and its induced increasing lane‐changing maneuvers increase the downstream queue discharge flows of general traffic. The empirical results also contribute to more efficient strategies of BRT planning and operations, such as alternative enforcement methods, various lane separation types, and optimized traffic operations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
On many urban low‐grade or branch roads, especially in medium or small cities in China, bicyclists and motorists commonly share the non‐barrier road surface. Because bicycles are unpredictable and unstable when moving, motorized vehicles must reduce their speed to safely approach and overtake them. In this study, the gradual deceleration process a motorized vehicle undergoes before it passes a bicycle was analyzed. The motorist was assumed to prefer a comfortable deceleration and to select a higher deceleration rate only when the distance to the bicycle was insufficient to reduce the car's speed to the expected value at a comfortable deceleration rate. Cellular automata (CA) simulations were used to reveal the flow characteristics of motorized vehicles reacting to bicycles traveling along the roadside, and the results show that for the general velocities of motorized vehicles and bicycles traveling on urban branch roads, the road capacity for motorized vehicles is not related to the number of bicycles present. However, the average travel time of motorized vehicles is significantly affected by the presence of bicycles when the number of motorized vehicles on the road is small. In addition, motorized vehicles' average travel time is more influenced by disturbances in the flow of motorized vehicles than by bicycles when the number of motorized vehicles on the road is large. Field observations and surveys were used to validate the traffic behaviors and simulation results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The paper introduces an optimal control method for traffic management with variable speed limits. It consists of traffic flow dynamics prediction with a non‐linearized Lighthill–Whitham–Richards macroscopic traffic flow model, introduction of a cost functional, which enables stable shockwaves optimization, and numerical implementation of the optimization process with differential evolution. The method overcomes the discretization issues and provides speed limits that are in general not limited to small number of successive discrete points, i.e. variable message signs locations, nor in rounded speed limits. Performance of the method is demonstrated on a case study, which shows promising reduction of the backward moving shockwave that occurs because of a stationary bottleneck. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Autonomous vehicles have the potential to improve link and intersection traffic behavior. Computer reaction times may admit reduced following headways and increase capacity and backwards wave speed. The degree of these improvements will depend on the proportion of autonomous vehicles in the network. To model arbitrary shared road scenarios, we develop a multiclass cell transmission model that admits variations in capacity and backwards wave speed in response to class proportions within each cell. The multiclass cell transmission model is shown to be consistent with the hydrodynamic theory. This paper then develops a car following model incorporating driver reaction time to predict capacity and backwards wave speed for multiclass scenarios. For intersection modeling, we adapt the legacy early method for intelligent traffic management (Bento et al., 2013) to general simulation-based dynamic traffic assignment models. Empirical results on a city network show that intersection controls are a major bottleneck in the model, and that the legacy early method improves over traffic signals when the autonomous vehicle proportion is sufficiently high.  相似文献   

15.
Traditionally, vehicle route planning problem focuses on route optimization based on traffic data and surrounding environment. This paper proposes a novel extended vehicle route planning problem, called vehicle macroscopic motion planning (VMMP) problem, to optimize vehicle route and speed simultaneously using both traffic data and vehicle characteristics to improve fuel economy for a given expected trip time. The required traffic data and neighbouring vehicle dynamic parameters can be collected through the vehicle connectivity (e.g. vehicle-to-vehicle, vehicle-to-infrastructure, vehicle-to-cloud, etc.) developed rapidly in recent years. A genetic algorithm based co-optimization method, along with an adaptive real-time optimization strategy, is proposed to solve the proposed VMMP problem. It is able to provide the fuel economic route and reference speed for drivers or automated vehicles to improve the vehicle fuel economy. A co-simulation model, combining a traffic model based on SUMO (Simulation of Urban MObility) with a Simulink powertrain model, is developed to validate the proposed VMMP method. Four simulation studies, based on a real traffic network, are conducted for validating the proposed VMMP: (1) ideal traffic environment without traffic light and jam for studying the fuel economy improvement, (2) traffic environment with traffic light for validating the proposed traffic light penalty model, (3) traffic environment with traffic light and jam for validating the proposed adaptive real-time optimization strategy, and (4) investigating the effect of different powertrain platforms to fuel economy using two different vehicle platforms. Simulation results show that the proposed VMMP method is able to improve vehicle fuel economy significantly. For instance, comparing with the fastest route, the fuel economy using the proposed VMMP method is improved by up to 15%.  相似文献   

16.
The ability to predict the response of a vehicle in a stream of traffic to the behaviour of its predecessor is important in estimating what effect changes to the driving environment will have on traffic flow. Various proposed to explain this behaviour have different strengths and weaknesses. The paper constructs a new model for the response of the following vehicle based on the assumption that each driver sets limits to his desired braking and acceleration rates. The parameters in the model correspond directly to obvious characteristics of driver behaviour and the paper goes on to show that when realistic values are assigned to the parameters in a simulation, the model reproduces the characteristics of real traffic flow.  相似文献   

17.
This paper presents a micro‐simulation modeling framework for evaluating pedestrian–vehicle conflicts in crowded crossing areas. The framework adopts a simulation approach that models vehicles and pedestrians at the microscopic level while satisfying two sets of constraints: (1) flow constraints and (2) non‐collision constraints. Pedestrians move across two‐directional cells as opposed to one‐dimensional lanes as in the case of vehicles; therefore, extra caution is considered when modeling the shared space between vehicles and pedestrians. The framework is used to assess large‐scale pedestrian–vehicle conflicts in a highly congested ring road in the City of Madinah that carries 20 000 vehicles/hour and crossed by 140 000 pedestrians/hour after a major congregational prayer. The quantitative and visual results of the simulation exhibits serious conflicts between pedestrians and vehicles, resulting in considerable delays for pedestrians crossing the road (9 minutes average delay) and slow traffic conditions (average speed <10 km/hour). The model is then used to evaluate the following three mitigating strategies: (1) pedestrian‐only phase; (2) grade separation; and (3) pedestrian mall. A matrix of operational measures of effectiveness for network‐wide performance (e.g., average travel time, average speed) and for pedestrian‐specific performance (e.g., mean speed, mean density, mean delay, mean moving time) is used to assess the effectiveness of the proposed strategies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents evidence that the commonly used point bottleneck model is too simplistic for freeway bottlenecks, the actual mechanism appears to occur over an extended distance. We find evidence of subtle flow limiting and speed reducing phenomena more than a mile downstream of a lane drop bottleneck. These phenomena impact the fundamental relationship, FD. Close to the lane drop the free flow regime appears to come from a “parabolic” FD, but further downstream the relationship straightens to a “triangular” FD and throughput increases. We develop a theory to explain the underlying mechanisms. These insights should help resolve the decades long debate about the shape of the FD. The phenomena also provide a mechanism that may contribute to the empirically observed capacity drop often seen at bottlenecks. Although we study a lane drop, this work should be transferable to other bottlenecks where the capacity restriction persists for an extended distance, e.g., a corridor with a fixed number of lanes and an on-ramp bottleneck.  相似文献   

19.
Certain details of traffic evolution were studied along a 2 km, homogenous freeway segment located upstream of a bottleneck. By comparing (transformed) cumulative curves constructed from the vehicle counts measured at neighboring loop detectors, it was found that waves propagated through queued traffic like a random walk with predictable statistical variation. There was no observed dependency of wave speed on flow. As such, these waves neither focused nor fanned outward and shocks arose only at the interfaces between free-flowing traffic and the back of queues. Although these traffic features may have long been suspected, actual observations of this kind have hitherto not been documented. Also of note, the shocks separating queued and unqueued traffic sometimes exhibited unexpectedly long transitions between these two states. Finally, some observations presented here corroborate earlier reports that, in unqueued traffic, vehicle velocity is insensitive to flows and that forward-moving changes in traffic states therefore travel with vehicles. Taken together, these findings suggest that certain rather simple models suffice for describing traffic on homogeneous freeway segments; brief discussion of this is offered in Section 5.  相似文献   

20.
Traffic signal timings in a road network can not only affect total user travel time and total amount of traffic emissions in the network but also create an inequity problem in terms of the change in travel costs of users traveling between different locations. This paper proposes a multi‐objective bi‐level programming model for design of sustainable and equitable traffic signal timings for a congested signal‐controlled road network. The upper level of the proposed model is a multi‐objective programming problem with an equity constraint that maximizes the reserve capacity of the network and minimizes the total amount of traffic emissions. The lower level is a deterministic network user equilibrium problem that considers the vehicle delays at signalized intersections of the network. To solve the proposed model, an approach for normalizing incommensurable objective functions is presented, and a heuristic solution algorithm that combines a penalty function approach and a simulated annealing method is developed. Two numerical examples are presented to show the effects of reserve capacity improvement and green time proportion on network flow distribution and transportation system performance and the importance of incorporating environmental and equity objectives in the traffic signal timing problems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号