首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
研究目的:针对浅埋大跨暗挖隧道地铁车站施工中,易产生地层的反复扰动、力学转换复杂等现象,引起地表过大沉降。本文主要介绍浅埋大跨暗挖地铁车站施工,通过对地表沉降的监控量测,分析变形规律,并对各种影响效应进行分析。研究结论:通过研究得出以下结论:(1)车站主体施工引起的地表沉降累计沉降平均为-36.31 mm,应该对地表沉降的限值进行修正,达到施工对周边环境影响最小,同时降低工程成本;(2)车站主体施工引起的地表沉降槽为:以车站中线为中心,拐点距沉降槽中心18 m左右,车站中线20 m以外地表沉降开始迅速减小,沉降分布范围为车站中心左右两侧约25~30 m;(3)车站主体施工引起的地表沉降主要发生在小导洞开挖支护和扣拱施工阶段,其地表沉降分别占到总沉降的48.47%和93.03%,尤其是小导洞开挖支护阶段,对地表沉降的贡献接近总沉降的一半;(4)该研究成果可为类似浅埋大跨暗挖地铁工程的设计、施工提供借鉴。  相似文献   

2.
北京地铁五号线崇文门站下穿既有地铁一号线区间隧道以及众多地下管道,为保证既有线地铁的正常运营和地下结构的安全,需严格控制新建车站施工引起的地层位移.针对新建崇文门车站暗挖施工对地下管线和既有线地铁影响的实际情况,分析和计算穿越既有线地铁段施工地表允许沉降值,提出一种合理的施工措施.  相似文献   

3.
软土地区盾构隧道穿越地下管线引起的管线沉降分析   总被引:4,自引:0,他引:4  
盾构隧道施工引起地下管线沉降的规律与通常情况下盾构推进引起的地层沉降规律有明显的不同.基于某软土地区地铁隧道工程实例,对上、下行线隧道穿越地下煤气管线的整个施工期间及其后续阶段的管线沉降观测数据进行分析,从管线沉降随切口位置的变化、直接观测点与间接观测点的沉降比较、不同位置观测点的沉降比较和纵向沉降特征等4个方面进行研究.结果表明:上、下行线隧道引起地下管线的累计沉降历程规律基本一致;采用间接观测点观测地下管线沉降具有一定的合理性;上、下行线隧道引起地下管线上不同位置观测点沉降的规律有所差异;上行线穿越后,地下管线的纵向沉降近似符合Guassian正态分布,而下行线穿越后不再服从该分布形式.  相似文献   

4.
以北京地铁蓟门桥站为工程背景,针对PBA地铁车站穿越各类土层的情况,采用Midas Gts NX有限元分析软件建立实体模型,模拟施工过程的各阶段,研究过程中引起的地层沉降规律。各种地层下PBA工法施工过程中引起沉降的最主要步骤均为导洞开挖施工阶段,发生沉降最大的部位在下导洞拱顶处,而剩余各阶段的沉降值在不同地层条件下差异较小;各地层中施工在同步序条件下引起沉降值由大到小的顺序为填土、粉质粘土、粉土、粉细砂、卵石-圆砾和卵石,深孔注浆加固措施对地层沉降的控制效果排序与之相同。结合工程的具体情况,对拟建车站施工过程的沉降值进行预测,并对施工中的土体加固提出了具体要求。研究结果为车站施工方案的可行性提供了依据。  相似文献   

5.
复杂条件下超大跨地铁车站施工仿真技术研究   总被引:3,自引:3,他引:0  
研究目的:研究复杂条件下超大跨浅埋暗挖地铁车站施工时,不同施工工序下开挖引起的地层扰动对地表沉降及拱顶下沉的影响规律。研究方法:以某超大跨浅埋暗挖地铁车站作为工程背景,利用ANSYS有限元软件作为开发平台,以浅埋暗挖隧道开挖支护理论为基础,采用平面应变模式,对双层两柱暗挖结构的三跨连拱隧道开挖支护全过程进行非线性仿真研究。研究结果:仿真计算结果与现场监测数据基本吻合,可以指导该类型隧道施工的地层沉降仿真研究、施工作业及信息化施工。研究结论:地表沉降影响范围约3倍洞径,最大沉降量为20.75 mm,拱顶最大下沉量为29.93 mm;超大跨隧道分部开挖“群洞效应”明显,在“上软下硬”围岩地层中,地层变形控制的关键工序是上部软岩断面的开挖支护,下部断面要减少爆破振动对地层变形的影响;大跨隧道开挖支护中,不同分部开挖引起的沉降量及沉降槽宽度是不同的。  相似文献   

6.
张健  张宇亭 《铁道工程学报》2014,(4):103-106,112
研究目的:天津滨海地区多为海相沉积层,地下水位高,地层中存在淤泥质土。地铁建设首先面临的问题就是地下车站基坑的稳定性,保证基坑工程的安全性具有重要的经济和社会效益。本文对天津地铁某换乘车站基坑开挖施工变形规律进行研究,对于后续开工建设的地铁车站基坑工程具有一定的借鉴意义。研究结论:(1)在地下车站开挖过程中,受软土层突然应力释放及地下水位变化的影响,易引起周边建筑物地基的不均匀沉降,造成地面开裂、建筑物与地下管线变形。(2)本文利用有限元分析软件,建立三维数值模型,对基坑分步开挖施工过程进行动态模拟,对开挖过程中的围岩稳定性进行计算分析,得出:车站各主要受力构件均未达到极限强度,整个车站不会发生结构失稳破坏;车站基坑周围地表沉降量不大,对既有运营的地铁线路及车站围护结构的影响较小,开挖满足结构变形与周边建筑物的差异沉降变形控制要求。(3)本研究成果可为沿海软土地区地铁车站基坑开挖等类似工程提供参考。  相似文献   

7.
以处于上软下硬地层的青岛地铁某车站修建为背景,采用数值模拟及现场监测相结合的方法,对初支拱盖法施工变形规律及控制进行了研究.结果 表明:拱盖中间导洞的开挖、拱盖施作和临时支撑的拆除,是车站修建中的几个关键工序;拱盖施工阶段,拱脚与拱肩部位受力转换频繁,沉降变形较明显,临时支撑拆除造成拱部围岩二次应力释放,需采用一定支护手段控制沉降;沉降槽最大值随开挖推进不断发生移动,直到中间导洞开挖时沉降最大值逐渐向隧道中心线上移动;适当缩小施工进尺距离与增加支护系统的刚度,对控制车站结构变形速率与变形量具有积极作用.  相似文献   

8.
李明 《铁道建设》2005,(3):41-44
本文主要介绍某地铁车站突破大断面软弱地层浅埋暗挖的施工技术,着重介绍了支护手段的运用与监控沉降变形的措施。  相似文献   

9.
浅埋暗挖大跨地铁风道施工技术   总被引:1,自引:0,他引:1  
研究目的:本文主要介绍了浅埋暗挖大跨地铁风道工程施工方法选择、施工工序及施工要点,并通过对地层变位的监控量测,实现信息化施工.研究结论:(1)风道施工过程引起的地表沉降的规律,可以划分为五个阶段:零变形阶段、微小变形阶段、剧增变形阶段、缓慢变形阶段、基本稳定阶段;(2)开挖支护对引起地表沉降的影响可达到地表总沉降的76.6%~92.5%;(3)路面外载荷对地表沉降的影响也不容忽视,建议采用在路面铺设钢板的方法来缓冲和扩散荷载的作用.  相似文献   

10.
研究目的:洞桩法作为一种修建地下车站的新兴工法,发展迅速,但其已有的研究成果主要集中在地表沉降及管线变形上,忽视了地下结构与土体的相互作用,尤其缺乏对于四洞三跨结构洞桩施工引起土体变形研究。本文以北京地铁16号线苏州街站工程为背景,基于实测数据对导洞开挖阶段地表沉降的发展及分布规律进行分析,并结合有限元方法动态模拟地铁车站洞桩法施工过程,研究四洞三跨结构洞桩法各施工阶段引起的土体变形规律。研究结论:(1)多个相邻导洞同时开挖会引起"群洞效应";(2)对地表沉降影响最大的主要是导洞开挖、初衬施工及二衬施工这三个阶段,占总沉降量的比值分别为32%、55%和7%;(3)二衬施工完后,支护体系初步形成,除开挖面底部土体因卸荷产生竖向隆起外,其他土体主要以水平变形为主:拱顶上部土体向车站中心发生一定水平位移,同时拱顶两侧土体受支护结构伸张变形的影响,向车站外侧发生明显水平位移;(4)本研究结论可为洞桩法的推广与应用提供理论依据,并可为类似工程的施工与设计提供参考。  相似文献   

11.
基坑变形监测是确保基坑施工安全的必要手段,开展深基坑变形现场监测研究对基坑工程建设具有重要意义。以宁波地铁3号线仇毕站深基坑工程为例,结合岩土工程勘察报告与支护设计方案,对工程区域地表、周边建(构)筑物与地下管线以及工程本身进行监控量测,并根据现场监测结果,对围护结构水平位移、地下连续墙墙顶沉降、地表沉降、管线及房屋沉降、基坑外水位变化、支撑轴力变化情况和发展规律进行了重点分析,得出了宁波软土地区地铁车站深基坑变形的一般规律及受力特征,可为车站基坑变形控制及类似工程的优化设计提供技术支持。  相似文献   

12.
某"拱盖法"施工的大跨地铁车站穿越断裂带时,拟采用管棚预支护和双侧壁导坑法开挖的施工方案。通过建立有限元模型,研究车站拱部支护结构变形随盖拱施工的变化过程。研究结果表明:盖拱形成后的拱顶累积沉降约8.7mm,该方案能够满足地铁车站施工穿越断层破碎带期间20mm的沉降控制要求。拱部施工4个环节的风险大小依次为:竖向支撑拆除与拱盖施作中间洞室开挖左侧导洞开挖右侧导洞开挖,可差异设置各施工环节的风险控制方案。支护结构的沉降变形在掌子面后方约1.0~2.0倍开挖高度的位置处达到稳定状态,具有滞后性。施工期间应重视掌子面后方相应范围内支护结构的变形监测。最后,结合现场监测数据,对研究结果进行了验证。  相似文献   

13.
研究目的:青岛地铁2号线华楼山路站处于硬岩微风化岩层,设计两端采用复合式岩石喷锚支护和吊脚桩支护方式进行明挖,中间段采用三台阶七步暗挖法,并采用爆破施工。本文以该车站工程为背景,在施工过程中对车站主体及周边环境进行现场监控量测,分析硬岩地区大跨度地铁车站施工变形特性并总结变形规律,为类似工程施工提供参考。研究结论:(1)复合式岩石喷锚支护段比吊脚桩支护段地表沉降小,基坑开挖初期地表沉降快速增大,开挖至地板位置趋于稳定,明挖段最大沉降量小于暗挖段最大沉降量;(2)相同深度位置处,复合式岩石喷锚支护段比吊脚桩支护段锚杆内力小,吊脚桩深层水平位移呈"倒梯形"分布;(3)暗挖隧道内,拱顶沉降和净空收敛主要发生在三个阶段,即上台阶和中台阶左右两侧开挖阶段,下台阶开挖时开始趋于缓慢稳定;(4)该研究成果可应用于指导硬岩大跨度地铁车站的施工领域。  相似文献   

14.
地铁盾构始发段施工难度较大,穿越高风险管线群的难度更大。以深圳地铁16号线大运中心站—龙城公园站区间盾构始发下穿高风险管线群工程为例,从多维度精细化控制角度出发,从始发端头土层加固、地层动态跟踪注浆、管线保护技术、盾构掘进参数优化和现场监测等5个方面对地铁盾构始发穿越高风险管线群综合加固技术和掘进参数控制进行研究,通过数值模拟及现场监测管线群变形分析了所提控制技术的适用性效果。研究结果表明,盾构施工采用本技术可以安全穿越始发段高风险管线群且沉降在允许范围内。  相似文献   

15.
超浅埋暗挖地铁车站施工易引起地表的过大沉降,对周边环境造成不良影响,为控制施工引起的沉降和保证市政设施的安全,引入棚盖暗作法的思路并应用于PBA车站,利用顶进钢管形成棚护体系,在其支护作用进行土方开挖。以北京地铁19号线一期平安里站为工程背景,简述棚盖暗作法PBA地铁车站的特点及施工步骤,对不同施工阶段产生的沉降进行统计分析并对地表沉降槽进行拟合,由此探讨施工引起的地表沉降规律。研究表明:沉降主要发生在管幕施工及导洞开挖阶段,约占总沉降的70%。针对棚盖暗作法PBA车站的特点,对产生沉降的原因进行梳理,提出加强空洞探测及处理、缩短开挖面封闭时间、加强超前支护的棚护效果、减小管幕顶进扰动土体、合理控制群洞开挖步序等沉降控制措施。  相似文献   

16.
为分析暗挖黄土地铁隧道双线斜穿地裂缝时地表变形规律,以西安地铁3号线为依托工程,通过理论分析、FLAC3D模拟及实测,对地裂缝处地表纵向、横向变形规律进行系统研究。主要结论:地裂缝与掌子面关键体相交时,该阶段为控制掌子面稳定性及地层沉降的关键;穿越过程地裂缝处上、下盘将产生沉降错台及水平张拉,二者发展趋势较为接近,错台的发展及恢复分别集中在进度-1.25D~0和0~1.75D;受先行隧道扰动影响,后行隧道于地裂缝处将产生更大的沉降差和最终沉降;地表最终纵向沉降将在上盘距地裂缝约1D处出现最值点,沉降集中区范围可按已有规程进行投影确定;地裂缝处的地层沉降控制可采用减小导洞面积、留设核心土、增强超前支护、控制地表水下渗等综合措施进行。  相似文献   

17.
城市地铁穿越既有线路的变形控制技术及效果   总被引:1,自引:0,他引:1  
在城市线网中,地铁线路不可避免地会遇到既有线路、建筑物及城市管线等.穿越既有设施是地铁建设的难点,要求沉降等变形严格控制.首都机场线车站穿越地铁13号线时采用洞内做桩,开挖过程中辅以千斤顶托换技术的施工方法.结果表明,施工监控量测效果良好,可供类似工程借鉴.  相似文献   

18.
深圳地铁区间浅埋暗挖隧道施工与沉降控制   总被引:4,自引:0,他引:4  
深圳地铁科华区间隧道地质条件复杂多变,属浅埋隧道,采用暗挖法施工,施工难度极大.结合施工实际,介绍了该隧道采取的竖井旋喷桩止水帷幕技术、富水软弱地层以及富水砂层的开挖支护技术,分别列举了隧道穿越地下管线、人行天桥、高楼地下室施工时采取的施工措施,总结了控制地表变形沉降的主要对策.  相似文献   

19.
为确保膨胀土地层渗水后,矿山法隧道近距离下穿既有地铁车站施工过程隧道及车站的安全,以合肥地铁5号线下穿既有车站隧道工程为依托,采用PLAXIS 3D岩土有限元软件精细化模拟整个施工过程,计算分析隧道、地层及既有车站结构的响应规律。研究结果表明:隧道下穿车站结构时经历的应力场较低;引起的地层变形主要表现为底部隆起和掌子面回弹变形;隧道下穿后,车站结构表现为中部隆起,前后两端沉降,施工时应控制既有车站的局部上浮。结合监测数据分析,表明隧道自身和既有车站基本处于安全稳定状态,施工方案合理可靠。  相似文献   

20.
北京地铁6号线浅埋暗挖法车站施工地表沉降规律研究   总被引:1,自引:0,他引:1  
对北京地铁6号线浅埋暗挖法车站施工引起的地表沉降规律进行研究,通过其中10个车站的地表沉降监测数据,分析地表沉降与车站埋深、开挖面积等影响因素的相关关系。研究结果表明:车站埋深与地表沉降不成反比;开挖面积相近时,东四站及其以东的暗挖车站地表沉降值明显大于其以西的暗挖车站;地表沉降区间频率曲线服从正态分布,地表沉降-40~-60 mm出现的频率最大;暗挖车站主体小导洞及桩柱体系、初支扣拱、二衬扣拱3个主要施工阶段引起的地表沉降比值为38∶14∶5;沉降槽反弯点与隧道中线的距离为10~14 m,地层损失率为0.3%~0.7%。研究结论可为类似车站周边环境风险评估及北京规划远期地铁线路起到指导作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号