首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 131 毫秒
1.
《公路》2021,66(7):115-120
桩基主要依靠桩侧和桩端土体提供承载力。大直径超长桩基的受力特性复杂,受土体性质、桩基类型、桩顶反力等诸多因素影响,尤其是泥浆护壁施工工艺形成的侧壁泥皮的影响,其桩基承载力发挥离散性大。为研究桩侧泥皮对大直径超长钻孔摩擦桩承载及受力性能的影响,基于现场取样获得的泥皮强度,采用有限元数值方法,从荷载沉降、桩身压缩、荷载分担比等角度,定量分析研究了大直径超长钻孔灌注桩受泥皮影响的规律。结果表明,大直径超长钻孔灌注摩擦桩承载力主要由桩侧摩阻力提供,泥皮效应对单桩极限承载力折减显著,其极限承载力仅为不考虑泥皮效应的38.5%,随着泥皮强度降低,桩侧土体侧摩阻降低,相同桩顶反力时沉降增大,单桩极限承载力降低。在实际工程中,泥皮的存在客观上很难避免,对于以桩侧摩阻力为主来提供承载力的大直径超长摩擦桩,宜采取措施降低泥皮含量,或增加泥皮强度,以保证桩基承载力正常发挥。  相似文献   

2.
大直径深嵌岩桩侧阻力试验研究   总被引:1,自引:1,他引:0  
随着大跨度桥梁工程的建设和上部结构荷载的增大,在一些地区已出现嵌岩深度超过5倍桩径的深长嵌岩桩基.基于自平衡测试技术,根据青岛海湾大桥两根桩基的静载荷测试报告,对大直径深长嵌岩桩的桩侧阻力进行了研究分析,主要内容包括桩顶等效荷载位移曲线分析,桩周岩层侧阻力大小、桩周岩层侧阻力与位移关系、桩侧与桩端阻力分担比等.研究结果表明,该地区大直径深长嵌岩桩的桩顶的Q-S曲线主要是缓变型为主;从桩侧岩层摩阻力来看,勘探报告所提供的岩层极限侧阻力数值偏小;从桩侧、桩端阻力分布来看,在软岩地区嵌岩深度大小对承载力影响较大,嵌岩比越大,桩端分担的阻力越小.  相似文献   

3.
高速公路、铁路桩承式路基中桩基的累积沉降发展对路基变形影响很大,为有效控制路基变形并利于后续运营,有必要深入研究竖向循环荷载下单桩的累积沉降发展规律。通过新研发的土体加压装置对模型试验中桩侧土体施加额外的侧向压力,开展了竖向循环荷载下双层地基中单桩模型试验,基于模型试验结果分析了循环荷载下侧向压力对桩顶累积沉降的影响,并进一步探究了侧向增压地基中循环荷载频率、循环荷载比(CLR)、静偏荷载比(SLR)对桩顶累积沉降的影响。研究结果表明:增加侧向压力不仅提高了单桩的极限承载力,还对循环荷载作用下桩顶累积沉降的影响明显,尤其循环荷载较小时增加侧向压力可能会改变桩顶累积沉降的发展模式。循环荷载下单桩的桩顶累积沉降明显受到循环次数、SLR、CLR及循环荷载频率的影响,桩顶累积沉降随着循环次数、CLR和SLR的增加而增大,且在循环加载前期的桩顶累积沉降发展较快,CLR对桩顶累积沉降的影响比SLR的大;荷载频率的增大同样会导致桩顶累积沉降增加,并朝着不利于桩基安全的方向发展;发展型的桩顶累积沉降与循环次数的关系可用对数函数进行表述。当前仅以荷载大小作为桩顶累积沉降发展类型的判定标准存在一定的局限性,应在工程设计及运营中特别注意循环荷载频率、CLR、SLR等因素的影响。  相似文献   

4.
为深入研究黄土区域桩基的荷载传递特性,以西安东北二环立交桥桩基为对象,基于锚桩-横梁反力装置,采用慢速维持荷载加载法进行现场静载试验,研究了简化计算法与轴力线性计算法下的桩顶沉降与桩身压缩之间的关系。研究结果表明:黄土浸水稳定结构重塑之后,桩侧土层承载力变化幅度较小;试桩受压产生向下位移对湿陷变形起一定带动作用,桩周土体沉降显著;未浸水试桩桩顶荷载Pt与极限荷载Pu之比为0.6时,桩顶沉降主要为桩身弹性压缩  相似文献   

5.
以某高速公路内岩溶区桥梁桩基建设为研究背景,探索各因素与桩基承载力的关系情况。选取ANSYS软件平台搭建相对标准化的三维模型探索工况情况、溶洞高度、溶洞跨度、桩身弹性模量等4个因素依次变化时桩基荷载与沉降位移变化关系。最后得到如下结论:(1)岩溶会削弱桩基承载力,桩基施加于溶洞顶板的影响大于桩基贯穿溶洞的情况。(2)桩基贯穿溶洞时桩基最大承载力与溶洞高度、跨度均呈线性负相关关系,溶洞高度的影响大于跨度。(3)桩身弹性模量与桩基最大承载力呈正相关关系,若弹性模量大于30. 0 GPa时增长幅度逐次减小。  相似文献   

6.
施工不当或者侧向堆载、开挖常常导致桩身倾斜,扶正难度较大,且目前对倾斜桩复合地基的变形性状缺乏相关研究,其可能导致新的工程病害,基于此,设计模型箱和加载装置,对竖向重复加卸载下倾斜桩复合地基变形规律开展试验研究。结果表明:循环加载过程中,倾斜桩顶及其复合地基沉降和侧移均随荷载增大而增大,其增长率随荷载增大而增大、随加载次数增大而减小;卸载过程中,卸载初期的倾斜桩顶及其复合地基沉降和侧移变化不明显,最后1~2级低压力时才出现弹性变形;相同荷载作用下,桩顶沉降量随倾斜角增加而增大,倾斜桩存在“沉降临界倾斜角”(试验前3次加卸载循环其值为6°),随土体密实度提高而降低,倾斜角小于该临界值时,倾斜对桩的沉降影响不大,反之,桩顶沉降量随倾斜角增加而快速增大;倾斜桩存在“侧移临界倾斜角”(试验为9°),为侧移峰值对应倾斜角;倾斜角度小于该临界值时,桩顶侧移随倾斜角增大而增大,反之,桩顶侧移随倾斜角增大而减小,“侧移临界倾斜角”大于“沉降临界倾斜角”;相同荷载作用下,倾斜桩复合地基的沉降大于倾斜桩沉降,而侧移比倾斜角6°桩大,比倾斜角12°桩小,桩身倾斜时,倾斜桩与复合地基的侧移量远比其沉降量小,但是侧移比沉降更为敏感。工程中,应尽量减少桩身倾斜,降低倾斜桩及其复合地基的沉降量和侧移量。  相似文献   

7.
为研究既有桩基位于拟建隧道周围不同位置时,隧道开挖对桩基产生的受力与变形规律,依托天津地铁3号线北站至铁东路站左线盾构区间项目,利用ABAQUS软件将隧道周围软土按照桩端径向、切向位置的不同划分为8个区,建立考虑软土修正剑桥本构关系的二维有限元模型,探讨隧道开挖后桩基分别处于设计荷载和极限荷载下的桩侧摩阻力和桩身位移变化规律,并建立隧道开挖对邻近单桩工作性状的影响分区。计算结果表明: 1)隧道开挖会使桩基近隧道侧产生负摩阻力,负摩阻力最大值随桩到隧道径向距离的减小而逐渐增大,随桩长的增大而逐渐增大; 2)隧道开挖会导致桩身极限侧摩阻力降低,当桩端位于隧道两侧分区时降幅较大,在10%~15%; 3)桩端分别位于隧道两侧、底部、顶部分区时,依次对桩身倾斜率、桩身挠曲变形和桩顶沉降的影响最显著; 4)提出能够对隧道开挖后既有单桩工作性状分区进行评价的指标,当桩端位于3区时,盾构隧道开挖造成单桩的综合影响程度最大,应加强施工监控措施。  相似文献   

8.
基于荷载传递法,考虑桩侧土体软化特性,提出一种单桩沉降预测的简化算法。采用内接三折线模型模拟桩侧阻力与桩土剪切位移间非线性关系及软化特性,采用双曲线模型模拟桩端阻力与桩端位移的非线性关系。根据桩侧及桩端荷载传递模型,利用简化递推方法可由桩端位移获得桩顶沉降。给定一系列桩端位移,即可绘制单桩荷载-沉降曲线。最后,结合实际工程案例,对上述方法进行验证。  相似文献   

9.
《公路》2018,(11)
为分析各因素对岩溶地区桩基承载特性影响,以指导桩基设计和施工。以龙怀高速公路岩溶区桥梁桩基工程为依托,通过ANSYS软件建立模型进行桩基荷载-位移特性分析。结果表明:岩溶对桩基承力性能有不利影响,且桩基作用于溶洞顶板较桩基内穿溶洞时影响更大;桩基内穿溶洞时,其极限承载力随溶洞高度和跨度的增加呈线性降低,且溶洞高度的影响更大;桩身弹性模量增加时桩基极限承载力提高,但弹性模量超过30GPa后提高速率减缓。  相似文献   

10.
加蓬共和国Ogooué特大桥桥位处的地层为深厚砂土层,基桩均采用钻孔灌注桩,采用数值方法研究了桩长、桩径、桩土弹模比、桩端土与桩侧土弹模比对超长钻孔桩承载性状的影响,分析了各因素下桩顶位移-荷载曲线、桩端位移-荷载曲线、桩身轴力传递、桩身压缩以及桩侧摩阻力的承载特性。结果表明:在一定桩长范围内增加桩长可提高基桩承载力,超过一定长度后增大桩长并不能提高基桩承载力;超长基桩在达到承载力时桩顶位移大,其中桩身压缩量占较大的比例,在大吨位超长基桩设计时应选择合理的长径比来提高基桩承载力;提高混凝土强度等级对增加基桩承载力较小,但能改善桩顶的沉降特性,基桩混凝土强度等级可选用C30~C35;增大桩端土的弹性模量可改善桩顶荷载-位移特性;其研究成果为砂土地区超长钻孔桩的设计与施工提供了一定的理论参考依据。  相似文献   

11.
王新泽 《路基工程》2023,(2):221-225
依托汉巴南铁路某桥梁桩基础工程,采用FLAC3D软件建立岩土-溶洞-桩基础三位一体的计算模型,分析岩溶地区桩基础在溶洞跨度、顶板厚度及溶洞形态多变量共同作用下的承载特性。结果表明:厚跨比不变时,顶板厚度的变化对桩基承载力的影响更为显著;长方体和圆柱体溶洞形态条件下的岩溶桩基安全厚跨比临界值选为1,而椭球体形态条件下的岩溶桩基安全厚跨比临界值选为2/3。通过顶板厚度对桩端承力影响曲线、顶板厚度对桩侧摩阻力影响曲线进行拟合,得到修正后的影响因子,进而对桩基经验公式进行修正,由修正后的经验公式所计算出的桩基极限承载力更贴合岩溶地区的实际情况。  相似文献   

12.
岩溶发育地质中的嵌岩桩,由于溶洞的存在,其受力机理与承载特性非常复杂。利用ABAQUS有限元分析软件,分析研究岩溶发育地质中溶洞对嵌岩桩的承载特性的影响,设计了四种不同的数值模拟分析对比方案,得出了岩溶地质中嵌岩桩的不同承载特性及桩侧摩阻力和桩端阻力的规律性结果,能使桩基设计达到优化的目的。  相似文献   

13.
采用正弦-全塑性模型来描述嵌岩桩的侧摩阻力与桩土相对位移之间的传递关系,导出了无限长桩桩侧阻力与桩顶相对位移之间的解析解;同时桩端阻力与桩端位移之间采用负指数-全塑性模型描述,进而得出了桩顶沉降量与竖向承载力之间的关系。并通过对某一嵌岩桩静载试验数据进行对比分析表明,该计算方法与实测结果吻合良好,方法简单实用,具有一定...  相似文献   

14.
桩基后压浆工艺是成桩时在桩身桩端预置压浆管路和压浆装置,待桩身达到一定强度后,通过压浆管路,采用高压注浆泵压注的浆液对桩端沉渣及桩侧泥皮进行固化,提高桩的承载力,减少沉降量,达到提高桩身质量的目的。目前,通过后压浆工艺提高桥梁桩基承载力在高速铁路领域尚鲜有应用。京沈高铁顺义特大桥#189,#190墩地处岩溶地区,原设计桩长需穿越大量溶洞区域,施工难度剧增,投资成本巨大,现通过桩基后压浆工艺,缩短桩长,提高了基桩承载力。现场静载试验证明:后压浆能够显著提高基桩承载力,减少沉降量,既能在京沈高铁沿线岩溶地区进行应用,又使桩基避开溶洞区域,降低施工难度。  相似文献   

15.
针对合肥某立交桥上跨既有盾构隧道工程,通过有限元数值模拟方法对单桩邻近隧道施工进行参数敏感性分析,并进一步研究立交桥单桥墩桩基础与双桥墩桩基础在施工及承载阶段对盾构隧道管片变形与内力的影响;通过对比分析2种立交桥跨越既有盾构隧道方式下的地表沉降、盾构隧道管片及铁轨变形,探讨2种跨越方式在工程应用中的优劣。研究结果表明: 1)单桩对邻近隧道结构的影响,随着桩长、桩径的增加而增大;随着桩隧净间距的增大而近似呈指数函数形式降低。2)当桩长与隧道埋深比值大于1时,增加桩长是减小隧道结构变形的有效途径。3)单桥墩桩基础施工阶段对盾构隧道的影响效应小于承载阶段,管片位移以沉降为主。承载阶段随着荷载的增加,横向轴力与弯矩在靠桩一侧拱腰位置变化最大,纵向轴力与弯矩在拱顶位置变化最大。4)双桥墩桩基施工及承受上部荷载时,较单桥墩而言同一管片处的沉降增大0.3 mm,水平向位移减小0.56 mm。经比较,中间无桩的跨越隧道方式更优。  相似文献   

16.
通过青海国道G227桥涵病害普查发现,由于桩基冻土融沉而造成桥台病害及盖梁开裂的现象在冻土退化边缘带分布广泛。根据实测数据及Midas FEA仿真综合分析得知:桩侧土融沉过程中,桩基承载力从桩身中上部向桩底1/3处移动,桩位移显著增大,在不同温度下,桩下沉位移差别较大,冻土上限区域有必要通过减小摩擦的方式降低负摩阻力及冻胀力的影响。  相似文献   

17.
岩溶桩基的应用随岩溶地区交通工程建设的快速发展而越来越普遍,如何评价桩端岩溶顶板稳定性成为岩溶桩基设计的关键问题之一,针对目前桩端岩溶顶板稳定性分析平面假设的不完善性,考虑溶蚀作用形成的溶洞所具有的空间形态特征进行岩溶桩基稳定性分析。首先,将基桩作用下的岩溶顶板分别简化为固支梁、抛物线拱、圆拱与固支双向板等承载模型,采用结构力学与双向板分析理论建立不同模型的桩端岩溶顶板抗弯最小安全厚度计算方法;其次,通过计算结果对比分析,揭示岩溶顶板最小安全厚度随矢高的变化规律;在分析岩溶顶板冲切破坏与剪切破坏形式的基础上,探讨桩端岩溶顶板破坏模式的控制因素及其影响规律,进而获得桩端荷载、石灰岩抗拉强度、溶洞跨度与矢高等因素对桩端岩溶顶板承载特性的影响规律;然后,基于溶洞钻孔探测所得地质勘查信息构建岩溶桩基稳定性分析流程,提出考虑溶洞空间形态特征的岩溶桩基稳定性分析方法;最后,通过工程案例具体分析桩端岩溶顶板最小安全厚度及其破坏模式随矢高的变化规律。研究结果表明:桩端岩溶顶板破坏模式不仅与溶洞跨度、桩径有关,而且与溶洞形态及其矢高也密切相关,此外,石灰岩抗拉强度对岩溶顶板稳定性的影响同样较大,详细全面的工程勘察资料能使桩端岩溶顶板稳定性分析结果更接近实际情况。  相似文献   

18.
以天津-潍坊高铁双线海河隧道下穿既有市政桥梁工程为依托,为探究盾构施工过程对地表沉降及市政桥梁桩基变形的影响规律,采用有限元分析软件Midas/GTS NX对盾构开挖全过程进行模拟.模拟结果表明,高铁隧道开挖至市政桥梁附近时地表沉降速率变大;地表沉降量最大的位置并不是桥梁桩基附近;在地质条件不好的情况下,隧道穿越桩端位...  相似文献   

19.
利用有限元分析软件建立桥梁基础及双孔地铁的模型,模拟地铁盾构的施工工况。研究盾构施工前后地铁隧道、周边土体变形趋势及其对地铁顺穿桥梁的桩基础轴力、弯矩、水平变形及沉降的影响。分析结果表明:隧道施工造成隧道上部土体沉降,下部土体隆起,隧道呈现椭圆形;其顺穿桥梁桩基轴力、弯矩增加幅度较大,桩基在地铁隧道深度以上竖向沉降,在隧道深度下局部桩体隆起,桩身位移呈现“3”字形,最大位移位于隧道中心标高与隧道底标高之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号