首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《公路》2015,(12)
马鞍山长江大桥北锚沉井体积巨大,下沉施工中有必要对其进行实时监测,主要监测内容包括刃脚与侧壁土压力、沉井结构钢板钢筋应力、沉井内外水位及沉井几何姿态等。首先采用数值分析,确定了沉井下沉初期为沉井结构受力的最不利工况,且边隔墙中跨部位为关键截面。监测结果表明,所选的关键截面较为合理。在沉井下沉初期,刃脚土压力对吸泥极为敏感。随着沉井的下沉,侧壁摩阻力逐渐增大,刃脚土压力趋于减小。沉井结构钢板与钢筋应力未出现过大拉应力,沉井几何姿态监测结果也表明下沉施工顺利。  相似文献   

2.
分析刃脚土阻力与侧壁摩阻力的大小和变化规律是沉井设计计算的重要内容,现有规范中所给的计算方法是否适用于大型沉井基础的设计计算,还需进一步验证。为此,通过布置刃脚踏面土压力传感器、侧壁土压力传感器以及GPS沉井姿态监测系统,对沪通长江大桥主墩沉井的下沉阻力开展了现场监测。结合大量现场监测资料,分析了大型沉井基础下沉期间的下沉机理与下沉阻力分布特征,对目前沉井下沉阻力计算中常用的规范和计算方法的适用性进行了分析,结果表明:目前的设计计算方法在计算刃脚土阻力时均未考虑刃脚所在土层前期固结压力的影响,因此,此类计算方法仅适用于沉井入土深度较小、刃脚所在土层前期固结压力不大的情况,当沉井入土深度较大时,计算值与实际值相比明显偏小;由于压力松弛效应,沉井侧壁摩阻力随入土深度的增大呈先增大后减小的变化规律,压力松弛区影响高度≥5 m。另根据现场监测结果,提出了侧壁摩阻力分布简化模型,分为以下3个阶段:第1阶段为线性增加阶段,侧壁摩阻力分布模式为三角形分布;第2阶段为压力松弛影响阶段,侧壁摩阻力分布模式为三角形分布+倒三角形分布;第3阶段为压力松弛下移阶段,摩阻力分布模式为梯形分布。研究结果可为沉井设计计算方法的优化提供参考。  相似文献   

3.
以温州市鹿城区七都岛—铁塔公园段跨瓯江电力隧道工程七都岛侧沉井基础为研究对象,对沉井在软土地基中下沉进行监测研究,通过现场监测数据分析,对沉井侧摩阻力、刃脚底部压力、沉井外土面沉降进行分析,得出沉井在软土地基中的下沉特性,这对理论研究与实际工程设计都有参考意义。现场监测数据结果表明:在软土地基中沉井侧摩阻力随着沉井入土深度的增加呈线性增加,到达一定峰值后缓慢降低;下沉过程中刃脚土压力的波动较为剧烈,其中刃脚斜面阻力占同一深度踏面阻力的10%左右;沉井下沉对周边土体沉降的影响范围比沉井在其他土体中小10%左右,为沉井下沉深度的10%左右。  相似文献   

4.
介绍了泰州长江大桥南锚碇沉井基础的施工特点和下沉阻力现场监测技术。在下沉过程中,采用土压力计监测了每节沉井的侧壁土压力和沉井的刃脚土压力。通过这些监测数据的整理和规律分析,既控制了沉井的安全平稳的下沉,也为同类型的大型沉井的设计和施工提供了可以参考的依据。  相似文献   

5.
通过分析马鞍山长江大桥锚碇基础大型沉井侧土压力的监测数据,提出了沉井侧摩阻力分布图式规律。当沉井下沉深度较小时,井壁侧阻力基本随着入土深度呈线性增长;而当沉井下沉超过一定深度后,随着下沉深度不断增加,侧摩阻力分布呈现上下小、中间大的分布图式,且峰值点以上的部分可基本看成线性分布。更重要的是,随着沉井入土深度的不断增加,沉井侧摩阻力峰值逐渐增加,且峰值发生的位置也逐渐下移,这主要是由于压力松弛区下移造成的。最后,提出同类大型沉井在类似地质条件下侧摩阻力的修正公式。  相似文献   

6.
五峰山长江特大桥主桥为主跨1 092m的钢桁梁公铁两用悬索桥,北锚碇采用100.7m×72.1m×56m的沉井基础。该沉井首节采用钢壳混凝土结构、其余9节采用钢筋混凝土结构,采用"三次接高、三次下沉"的方案施工。为及时掌握沉井下沉施工过程中的几何姿态及受力情况,建立实时在线监测系统,对沉井几何姿态、沉井结构应力及沉井刃脚土压力进行自动化监测,基于监测数据及时进行沉井下沉控制。结果表明:下沉过程中沉井测点高差和倾斜度均在限值内,沉井挠度基本在20mm限值内,沉井几何姿态较好;沉井混凝土及钢结构测点的实测应力基本在限值范围内,沉井刃脚各测点的土压力均控制在1.20MPa限值内,沉井结构受力良好。  相似文献   

7.
为了准确分析沉井侧壁摩阻力的大小及分布规律,分别制作直壁式井壁、阶梯式井壁局部模型开展离心模型试验,分析沉井侧壁摩阻力的分布形式,讨论阶梯式井壁侧壁摩阻力的时间效应,并根据试验结果提出沉井侧壁摩阻力的计算模型。结果表明:直壁式井壁的侧壁摩阻力随入土深度的增加呈先增大后减小的近似抛物线分布,阶梯式井壁阶梯以上及阶梯以下靠近阶梯处的侧壁摩阻力比直壁式井壁显著减小且最大值出现位置下移;阶梯导致的侧壁摩阻力折减效果随着时间的增加逐渐减弱;阶梯式沉井下沉计算时,应根据下沉时间选取不同的侧壁摩阻力折减系数;采用分段函数对沉井侧壁摩阻力进行描述,计算值与试验值吻合较好。  相似文献   

8.
南京长江第四大桥北锚碇沉井基础施工监控技术   总被引:2,自引:0,他引:2  
南京长江第四大桥北锚碇采用沉井基础,尺寸为69.0 m×58.0 m×52.8 m,距长江大堤仅90 m.沉井体积庞大,所处区域地质条件复杂,覆盖层较厚.依据规范并结合以往的施工经验,提出沉井几何姿态监控标准.介绍沉井下沉深度和平面位置及偏斜、刃脚踏面反力、沉井侧壁土压力、沉井结构应力、地下水位与井内水位、沉井底部土体开挖地形、地表沉降和长江防洪大堤沉降量的监测方案.通过施工监测,掌握沉井下沉的实时信息,为施工提供指导信息,确保施工安全顺利进行.  相似文献   

9.
常泰长江大桥主航道桥为主跨1 176m公铁合建斜拉桥,通过技术经济综合比选,桥塔基础采用沉井方案。针对超大型沉井基础截面尺寸大、自重重、入土深等问题,提出了减自重、减冲刷的新型台阶型沉井基础方案,通过模型试验及数值分析确定了沉井相关设计参数,并基于地基中土体的三维应力状态和摩尔-库伦强度破坏准则,建立了深大基础三维地基承载力计算表达式。沉井基础成功实施的关键是可控的取土下沉措施,研究了超大型沉井下沉机理,探明随着沉井平面尺度的不断增大,端阻力与井壁侧摩阻力相比逐渐成为控制因素,沉井下沉施工必须进行盲区取土。通过对沉井刃脚下土体破坏形态的研究,提出土体破坏的临界宽度控制法和台阶式取土法,可为沉井下沉施工提供指导。  相似文献   

10.
徐智 《公路》1996,(7):25-28
在长东黄河大桥沉井基础施工中,采用了空气幕辅助沉进下沉。在加快沉井施工进度和提高工程质量方面取得了显著效果,由于空气幕减小了井壁与土壤之间的摩阻力使沉井下沉容易,也可利用空气幕不同区段送风使沉井顺利纠偏。  相似文献   

11.
马鞍山长江公路大桥北锚碇沉井基础施工中,沉井不排水下沉终沉阶段采用空气幕辅助下沉.该沉井采用3次接高、3次下沉的工艺,在第2节沉井接高时,在其井壁外侧布置竖向风管、水平风管和气龛,并在后续沉井接高中将竖向风管相应接长.终沉阶段向风管内通人压缩气体,气体从气龛孔喷出后使井壁与土壤之间的侧摩阻力减小,从而达到促使沉井快速下沉的目的.沉井下沉中应用空气幕对加快沉井施工进度、提高工程质量、降低工程造价方面有显著成效.  相似文献   

12.
前言沉井气幕下沉是我们学习铁道部大桥局二处介绍的一项新工艺。沉井气幕法工艺:就是在沉井外井壁的周围,预设竖直管道及若干层横向环形管道,每层环形管上钻有许多小孔,压缩空气通过管道从小孔向井壁外喷射,使沉井井壁周围的土壤液化,从而减小井壁与土壤间的摩阻力,使沉井加快下沉的方法。  相似文献   

13.
沉井基础在大型桥梁主墩、锚碇基础中得到广泛应用,并在沉井工程勘察、工程设计与施工技术方面取得了一定的进展。在工程勘察技术发展方面,地质参数获取方法在现有理论分析法、室内试验法、现场试验法的基础上进一步发展了现场载荷板试验法,研制了侧摩阻力监测装置,对地基承载力、侧摩阻力等地质参数认识不断加深。在工程设计技术发展方面,通过对平面形式与尺寸、结构安全、软弱地基砂桩加固等方面不断进行优化设计,形成了适用于大型沉井的结构与地基处理的设计方法。在沉井施工技术发展方面,针对沉井浮运定位与着床,提出了井孔封闭助浮、多阶段多方式长距离浮运技术,以及液压千斤顶多向快速定位着床技术,研发了锚系定位系统;针对锅底开挖下沉的不足,提出了全节点支撑、中心块状支撑等新型开挖下沉工艺;针对高压射水结合泥浆泵设备取土的不足,研制了四绞刀快速破取土设备、可自移动式快速取土设备、机械臂水下定点取土机器人等新型设备;针对人工监测的不足,采用信息化监测系统进行沉井施工监测,形成了自动监测-风险预警-辅助决策控制-设备自动化执行的智能化监测控制技术;在沉井工业化建造技术方面进行了有益探索,将取土平台与供气管、供水管、排泥管、施...  相似文献   

14.
以某沿海大型污水处理构筑物沉井为例,通过对比分析沉井初沉前不同预制高度(第一节)条件下的基底压力、地基承载力及不同刃脚下沉深度的阻力,对沉井施工过程中可能发生的问题进行预测;提出了基于基底压力、修正地基承载力分别与砂垫层厚度的曲线及交点进行沉井预制前临时基础铺设砂垫层厚度优化,基于地层界面处刃脚下取土和刃脚下留土两种取土方法的下沉系数与合理区间[1.05, 1.25]的关系进行沉井实施方案优化的方法。以计算结果和变化规律为基础预测可能发生的问题,与现场实际基本一致;对实施方案进行合理优化,确保了沉井的顺利实施。  相似文献   

15.
王宏翔  李维生 《公路》2021,66(12):193-198
在超大型沉井施工过程中,由于沉井体积较大,重量大,下沉深度深,受地层地质、地下水、周边结构物等影响,在不同下沉阶段,其下沉方式不同.在大型桥梁陆地沉井下沉前期采用降排水下沉,中后期采用不排水下沉,不同地层,取土方式不同,对四周地面、结构物等影响非常大.比如在粉土、粉质黏土、粉砂、粉细砂和圆砾等地质中容易出现取土不均匀,取土不当引起内外压力差过大,产生涌砂等现象,造成沉井突沉,甚至沉井倾斜,沉井四周地面不同程度的沉陷.为了确保沉井施工质量和安全,顺利下沉到位,依托南京仙新路过江通道北锚碇沉井的不排水下沉关键技术进行讨论研究.  相似文献   

16.
官厅水库特大桥为主跨720m的单跨悬索桥。大桥南岸锚碇基础为33m高全钢筋混凝土沉井结构,标准平面尺寸为56m×50m。沉井中心距离京包铁路线仅60m,墩位处地质结构主要为粉质黏土和圆砾土。为对既有铁路线进行防护,采用单排钻孔灌注桩作为防护桩,在沉井施工之前完成防护桩的施工。沉井接高之前直接在地面根据沉井刃脚仿形开挖沟槽,沉井底节采用土模法在沟槽内安装模板和绑扎钢筋进行接高,底节完成后沉井采用翻模法正常接高,单次接高3m,接高到15m后开始第1次下沉施工。沉井共分2次下沉施工,进入地下水5m前采用干挖取土下沉,之后采用水下吸泥取土下沉。下沉施工采用潜水泵水下高压射水辅助吸泥,空气幕实施助沉。施工过程快速、平稳有序,确保了铁路路基的稳定,沉井按设计要求下沉到位。  相似文献   

17.
为了解特大圆形锚碇沉井下沉施工中下沉系数和稳定系数变化规律,以武汉鹦鹉洲长江大桥北锚碇高43m、外径66m的沉井基础为背景,运用太沙基理论对3次接高与3次下沉的不排水沉井施工方案各工况进行稳定性验算。结果表明:在前2次沉井下沉过程中,其下沉系数较大,下沉较容易;第3次下沉过程中,其下沉系数减小,下沉较困难,须采取相应助沉措施。沉井的正面阻力和侧摩阻力在各下沉工况下均随着沉井的下沉深度呈线性增加,且正面阻力在沉井节段接高稳定工况下增幅达到最大,在刃脚踏面支承工况下增幅最小,稳定性均满足要求。  相似文献   

18.
为了解深厚淤泥土层中大型沉井基础下沉阻力的分布特征,以温州瓯江北口大桥(主桥为主跨800m的三塔钢桁梁悬索桥)为背景,对中塔沉井基础下沉阻力监测数据进行分析,研究侧壁土压力、底面支承反力分布规律,以及刃脚底面反力与静力触探指标之间相关性。结果表明:淤泥土地层中施工的大型沉井基础,其侧壁压力沿深度方向近似线性增长,其值略大于相同深度位置的水土自重压力;沉井刃脚底面及斜面的反力值在底口入土一定深度后保持稳定,刃脚底面与斜面反力的比值为1.8~2.2,相对稳定;刃脚底面反力值与静力触探试验的锥尖阻力具有较高的相关性,在沉井底口中心下沉到一定深度后,其比值为1.4~2.2。  相似文献   

19.
为确保南京长江第四大桥北锚碇沉井安全、顺利地下沉至设计标高,在沉井施工过程中实施了信息化的监控技术,主要介绍了北锚碇沉井施工过程中的信息化监控技术,包括监控元器件的布设、结构应力应变的监控、侧壁土压力的监控、监控数据的分析等内容。  相似文献   

20.
为解决泰州长江公路大桥在复杂条件下深水沉井定位难、摆动大等难题,以该桥中塔沉井为例,采用河工模型试验、CFD方法分析沉井着床阶段的河床冲刷形态和沉井摆动,同时研究终沉阶段下沉系数和沉井施工监控系统.根据分析研究结果,沉井定位采用“钢锚墩+锚系”的半刚性定位系统;采用“小锅底”取土方式下沉;采用信息化实时监控系统实时监测沉井空间几何姿态,确保了沉井准确定位与平稳下沉,最终将其平面误差控制在30 cm以内,垂直度误差为1/363.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号