首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Absolute nodal coordinate formulation for a rectangular plate with large deformation was improved. Based on nonlinear elastic theory, a precise strain expression is used to derive the equations of motion. Both shear strain and transverse normal strain are taken into account. Different from the previous absolute nodal coordinate formulation, the absolute nodal coordinates, which describe the displacement and slope of the element nodes, are separated into three parts: the absolute nodal coordinates in X, Y and Z directions, respectively, so that the dimension of the mass, stiffness and force matrices is reduced. Furthermore, by using constant matrices, which can be calculated and saved before simulation, the nonlinear stiffness matrices can be calculated by matrix multiplication for each time step, so that the computational efficiency can be improved. Finally, simulation example of a rectangular plate with large deformation was used to verify the accuracy and efficiency of the present formulation.  相似文献   

2.
The extended finite element method(XFEM) is a numerical method for modeling discontinuities within a classical finite element framework. Based on the algorithm of XFEM, the major factors such as integral domain factor and mesh density which all influence the calculation accuracy of stress intensity factor(SIF) are discussed,and the proper parameters to calculate the SIF are given. The results from the case analysis demonstrate that the crack path is the most sensitive to the crack growth increment size, and the crack path is not mesh-sensitive. A reanalysis method for the XFEM has been introduced. The example presented shows that there is a significantly reduced computational cost for each iteration of crack growth achieved by using the reanalysis method and the reanalysis approach has increasing benefits as the mesh density increases or the value of crack growth increments size decreases.  相似文献   

3.
The stress distribution surrounding the fastener hole in thick laminate mechanical joints is complex. It is time-consuming to analyze the distribution using finite element method. To accurately and efficiently obtain the stress state around the fastener hole in multi-bolt thick laminate joints, a global-local approach is introduced. In the method, the most seriously damaged zone is 3D modeled by taking the displacement field got from the 2D global model as boundary conditions. Through comparison and analysis there are the following findings: the global-local finite element method is a reliable and efficient way to solve the stress distribution problem; the stress distribution around the fastener hole is quite uneven in through-the-thickness direction, and the stresses of the elements close to the shearing plane are much higher than the stresses of the elements far away from the shearing plane; the out-of-plane stresses introduced by the single-lap joint cannot be ignored due to the delamination failure; the stress state is a useful criterion for further more complex studies involving failure analysis.  相似文献   

4.
Based on relating equation group, a simplified method was presented in terms of the matrix displacement method, which can be conveniently used to study the re-distribution of the internal forces and displacement of truss structures due to the removal of members. Such removal is treated as though adding a load case to the original truss, and the re-distribution can be calculated without modifying the original global stiffness matrix. The computational efficiency of the presented method is faster by square times than that of the matrix displacement method. The results from the two methods are identical.  相似文献   

5.
A coupled element modeling method is proposed for global dynamic analyses of unbonded flexible risers.Owing to the multi-layer structure of unbonded flexible risers, the global-dynamic-analysis method applied to the steel rigid risers is insufficient for flexible risers. The main challenges lie in the enormous difference between the anti-tension and anti-binding capacity of unbonded flexible risers which results in serious ill-conditional calculation in global dynamic analysis. In order to solve this problem, the coupled element modeling approach was proposed in this study. A time domain fatigue analysis was applied to illustrate the necessity of the proposed approach.A dynamic benchmark case is used to demonstrate the accuracy of the coupled element method respectively.Subsequently the validated coupling element method is employed to conduct the global dynamic analyses for a free hanging flexible riser. The results demonstrate that the proposed approach can give the accurate global dynamic response under the guidance of the fatigue failure mode for unbonded flexible riser. The parametric influence analyses also provide a practical and effective way for predicting the global dynamic response.  相似文献   

6.
As a force-based finite element method (FEM), large increment method (LIM) has been developed in recent years. It has been shown that LIM provided prominent advantage of parallel computation with high efficiency and low time consumption for member structural system. To fully utilize its advantage in parallel computation, it is the time to extend LIM to 2D and 3D continua analysis. In this paper, a 2D finite element library with the capability of modeling arbitrary configurations is developed. Some illustrative numerical examples are solved by using the proposed library; the obtained results are compared with those obtained from both traditional displacement-based FEM and analytical solutions, which has clearly shown the advantages of LIM.  相似文献   

7.
In this paper, a dynamic model for an underwater snake-like robot is developed based on Kane's dynamic equations. This methodology allows construction of the dynamic model simply and incrementally. The partial velocity is deduced. The forces which contribute to dynamics are determined by Kane's approach. The generalized active forces and the generalized inertia forces are deduced. The model developed in this paper includes inertia force, inertia moment, gravity, control torques, and three major hydrodynamic forces: added mass, profile drag and buoyancy. The equations of hydrodynamic forces are deduced. Kane's method provides a direct approach for incorporating external environmental forces into the model. The dynamic model developed in this paper is obtained in a closed form which is well suited for control purposes. It is also computationally efficient and has physical insight into what forces really influence the system dynamics. The simulation result shows that the proposed method is feasible.  相似文献   

8.
This paper introduces the influence factors of axial stiffness of tubular X-joints. The analysis model of tubular joints using plate and shell finite element method is also made. Systematic single-parameter analysis of tubular X-joints is performed using Ansys program. The influences of those factors, including ratio of brace diameter to chord diameter (β), ratio of chord diameter to twice chord thickness (γ), ratio of brace wall thickness to that of chord (τ), brace-to-chord intersection angle (θ), and chord stress ratio, ratio of another brace diameter to chord diameter, in-plane and out-of-plane moment of braces, etc., on stiffness of tubular X-joints are analyzed.Two non-dimensional parameters-joint axial stiffness factor ηN and axial force capacity factor ωN are proposed,and the relationship curve of the two factors is determined. Computational formulas of tubular X-joint axial stiffness are obtained by multi-element regression technology. The formulas can be used in design and analysis of steel tubular structures.  相似文献   

9.
This paper proposed a new method of semi-automatic extraction for semantic structures from unlabelled corpora in specific domains. The approach is statistical in nature. The extracted structures can be used for shallow parsing and semantic labeling. By iteratively extracting new words and clustering words, we get an inital semantic lexicon that groups words of the same semantic meaning together as a class. After that, a bootstrapping algorithm is adopted to extract semantic structures. Then the semantic structures are used to extract new key words and augment the semantic lexicon. The resultant semantic structures are interpreted by persons and are amenable to handediting for refinement. In this experiment, the semi-automatically extracted structures SSA provide recall rate of 84.5%.  相似文献   

10.
This paper established practical 3-D gear models to study the stiffness influencing factors of a loaded gear by finite element method, such as friction parameters, material properties, and gear structures. The research shows that, in elastic deformation, gear stiffness increases when sliding friction ability of contact pair decreases; meanwhile, the gear structure, especially asymmetric design in gear's shaft direction will also decrease gear stiffness.  相似文献   

11.
建立Timoshenko深梁单元的新方法   总被引:5,自引:0,他引:5  
基于Timoshenko两广义位移梁理论,建立考虑剪切效应的Timoshenko深梁单元横向线位移、转角和剪应变的各自插值函数,利用有限元方法导出单元线弹性刚度、一致质量矩阵和几何刚度矩阵。算例结果表明此公式用于静力、动力和稳定性分析是可靠的,并且不出现剪切闭锁现象。  相似文献   

12.
与已有文献中采用的广义位移不同,选取剪力滞引起的附加挠度作为广义位移,在构造广义翘曲位移函数的基础上,提出了一种分析箱梁剪力滞的解析法.基于能量变分法建立控制微分方程,并导出了简支箱梁的附加挠度和广义力矩计算公式.通过对一个混凝土简支箱梁算例的计算表明,按本文方法计算的跨中截面应力与有限元法的结果很接近,从而验证了方法的正确性.研究结果表明,剪力滞引起的混凝土简支箱梁跨中截面的附加挠度很小,工程实践中可以忽略不计,但是,跨中截面的剪力滞翘曲应力达到初等梁应力的11.4%,工程实践中不能忽略.  相似文献   

13.
等参单元在货车转向架强度计算中的应用   总被引:1,自引:0,他引:1  
推导了八节点六面体等参单元的应变矩阵、刚度矩阵,对该单元的位移解收敛性和畸变敏感性进行了分析。针对转向架强度分析的特点,在MATLAB平台上开发了一套求解位移的有限元程序。该程序通过读取ANSYS软件输出的数据文件中的模型信息,采用八节点六面体等参单元,求出单元刚度矩阵及单元体积力矩阵,组集单元,引入位移边界条件,得到一组以节点位移为未知量的多元线性方程组,求解得到单元节点位移。最后对160 km/h货车转向架侧架的主要载荷进行了位移计算,结果与ANSYS软件计算结果基本吻合。  相似文献   

14.
Introduction   Pantographic foldable structure works on theprinciple of a pantograph[1,2 ] . A structure of thistype may be referred to as“pantograph structure”,or simply“p- structure”. The basic unit for the p-structure is a componentso- called duplet[3 ] ,orpan-tograph unit[4] ,Scissor- Like Element ( SLE) [5] ,asshown in Fig.1 .A pantograph unitconsists of twocoplanar straightbars called uniplet,which are ca-pable of rotating about the intermediate pivot,re-ferred to as a scissor h…  相似文献   

15.
根据最小势能原理,建立薄壁箱梁挠曲剪滞基本微分方程.以其解析式作为形函数,利用刚度系数的定义,推导了考虑剪滞影响的箱形梁单元刚度矩阵及等效结点力公式.用该梁单元对一箱梁模型进行计算,并与按SAP通用程序计算结果及试验结果进行比较,证实了本文方法简单而且有效.为了探讨各种剪滞翘曲位移模式的合理性,分别选取二次抛物线、三次抛物线、四次抛物线及余弦函数等翘曲位移模式进行计算;结果表明,这些翘曲位移模式在一定程度上均存在不足,目前还缺乏一种更加合理的位移模式.  相似文献   

16.
基于m法对弹性土抗力的假设,结合有限元基本原理,考虑桩土相互作用后横向受力桩的综合刚度——通过将桩侧土的刚度与桩身刚度叠加进行分析.结合算例计算出桩身变位和内力,并与m法的幂级数解计算结果相比较.综合刚度有限元法的算法简洁,适用范围广,便于编制程序计算和控制,精度也能满足工程要求.  相似文献   

17.
轨道结构路桥过渡段静力分析   总被引:3,自引:0,他引:3  
将轨道结构简化为弹性支承交叉地基梁系,建立了有碴轨道结构路桥过渡段的空间计算模型,采用ANSYS有限元分析软件对过渡段结构进行了静力分析,并对不同的竖向支承刚度比时过渡段钢轨及轨枕的应力及位移进行了讨论。  相似文献   

18.
基于广义变分原理的铁路无缝道岔计算理论   总被引:3,自引:0,他引:3  
在继承现有试验成果的基础上,将广义变分原理应用于铁路无缝道岔结构体系的分析,提出了一种新的铁路无缝道岔计算理论,建立了较为完善的计算模型,在假设钢轨纵向位移函数的基础上,计算了无缝道岔结构体系各部分的能量,通过广义变分法建立了结构体系的平衡方程,编制了计算程序,分析了固定辙叉无缝道岔钢轨温度力与位移。  相似文献   

19.
大跨度钢桁斜拉桥上无缝线路制动力的计算   总被引:2,自引:0,他引:2  
为探讨大跨度钢桁斜拉桥上无缝线路制动力的传力机制,基于有限元法和梁轨相互作用理论,建立了反映斜拉索、主塔、半漂浮体系等桥梁特征的梁轨纵向相互作用平面模型,分析了斜拉索刚度、主塔刚度以及半漂浮体系中粘滞阻尼器对制动力的影响,并提出了制动力的简化算法.研究结果表明:制动力满足斜拉桥上铺设无缝线路的要求,且其分布规律与普通桥上相同;粘滞阻尼器对制动荷载下斜拉桥上无缝线路梁轨相互作用的改善较明显,有效降低了梁轨相对位移,减小了制动力;与主塔刚度相比,斜拉索刚度对桥上无缝线路制动力的影响较大,因此,设计桥上无缝线路时,可只考虑斜拉索刚度的影响.  相似文献   

20.
采用轨段单元模拟弹性支承块式无砟轨道结构。钢轨模拟为弹性点支承Euler梁;钢轨下面的支承块视为刚体;道床板视为弹性薄板,并且采用横向有限条与板段单元法对其进行位移插值;钢轨扣件和支承块下胶垫和套靴模拟为线性弹簧和阻尼器;道床板与混凝土底座下的路基模拟为连续分布面弹簧和阻尼器。基于弹性系统动力学总势能不变值原理和形成系统矩阵的“对号入座”法则,建立了高速列车-弹性支承块式无砟轨道系统竖向振动矩阵方程,得到了系统振动响应,进一步分析了套靴刚度和阻尼对此系统竖向振动响应的影响规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号