首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
风暴模型是Tomita等提出的用来评估船舶结构疲劳强度的一种随机波浪载荷简化模型,它能表达波浪载荷是与时间相关的随机过程。文中介绍了风暴模型及波浪诱导应力短期分布的基本特征。将风暴模型和裂纹扩展率单一曲线模型及焊趾表面裂纹应力强度因子的计算方法结合起来,探讨了复杂载荷作用下船舶结构疲劳裂纹扩展预报方法。并用权函数法计算了给定残余应力分布的表面裂纹应力强度因子。预报了对接焊接接头焊趾处表面裂纹在风暴波浪载荷作用下的疲劳裂纹扩展行为,结果表明风暴的大小、顺序,初始裂纹尺寸及残余应力对裂纹扩展行为影响明显。合理的风暴模型参数及初始裂纹尺寸的确定对船舶结构的疲劳寿命预报是非常重要的。  相似文献   

2.
考虑塑性损伤的船体裂纹板低周疲劳裂纹扩展行为研究   总被引:1,自引:0,他引:1  
邓军林  杨平  陈远 《船舶力学》2017,21(12):1507-1526
船舶结构的扩展断裂失效往往是低周疲劳破坏和累积递增塑性破坏耦合作用的结果,疲劳裂纹的扩展就是裂纹尖端前缘材料刚度不断降低延展性不断耗失而逐渐分离的结果.基于弹塑性断裂力学理论,文章提出了考虑累积塑性损伤的低周疲劳裂纹扩展速率预测模型.通过低周疲劳裂纹扩展试验拟合出模型相关材料参数并验证预测模型的合理性.通过系列有限元计算对平均应力及应力幅值的影响因素进行了数值分析.该模型的计算结果与已有实验结果基本吻合;对合理预估船体裂纹板的常幅低周疲劳裂纹扩展寿命有重要意义.  相似文献   

3.
疲劳是海洋结构物破坏的重要因素,为简化舰船结构疲劳评估方法,基于线弹性断裂力学和切口应力强度理论,针对典型薄板结构研究拐角节点处的应力强度,分析结构形式,利用ANSYS有限元模拟和MathCAD函数拟合,分别给出计算应力强度因子的"奇异权函数法"和"奇异等效裂纹法"的研究方法,同时给出简便算法和经验公式。进而应用Paris裂纹扩展法则进行结构奇异强度疲劳特性评估,并结合S-N曲线分析拐角节点处的应力集中,得到与结构尺寸相关的"奇异应力集中系数"函数。最后,针对切口应力,提出有限元分析所需要的"奇异应力等效取值点"的参考位置。希望能将奇异强度理论纳入船舶结构疲劳强度校核规范中做参考。  相似文献   

4.
《Marine Structures》2003,16(3):185-200
The literature on fatigue analysis of welded joints is reviewed, considering mainly papers and books published during the past 10–15 years. After a short introduction, the different approaches for fatigue analyses are covered, i.e. the nominal stress approach, the structural or hot-spot stress approach, the notch stress and notch intensity approach, the notch strain approach and finally the crack propagation approach. Only seam-welded joints are considered, and not the behaviour of spot-welds, which is a very special field. Due to the vast amount of relevant literature, some specific areas are left for other reviews or only touched, i.e. fatigue testing and evaluation, fatigue loading and variable amplitude effects, environmental effects and fatigue reliability.  相似文献   

5.
Fatigue is a common failure mode in ship structures. For structures with an initial crack, the fatigue crack propagation behavior needs to be considered. The purpose of this study is to establish a procedure for analysis of fatigue crack propagation of ship structures in combination with reliability methods. The stress intensity factor (SIF) and geometry correction factor are calculated by means of finite element analysis. Validation for the SIF calculation is achieved by comparing the computed results with those based on related solutions. Since fatigue damage usually occurs in weld areas, the effect of such components on the fatigue crack propagation behavior was also considered in this work. The Paris law in combination with the Monte Carlo technique are employed for the fatigue crack propagation analysis in this study. Reliability updating based on inspection for cracks is also carried out. A computer program was developed for the purpose of fatigue crack propagation analysis within the framework of reliability methods. An application example of fatigue crack propagation in relation to the hull of the icebreaker Xuelong 2 is presented. The sensitivity of the procedure to key analysis parameters (sample size, initial crack size) is also considered. Finally, the effect of low temperatures on the computed results is also analyzed.  相似文献   

6.
The authors have developed a simulation program, CP-System, for multiple cracks propagating in a three-dimensional stiffened panel structure, where through-the-thickness crack propagation is formulated as a two-dimensional in-plane problem, and the crack propagation behavior is simulated by step-by-step finite element analyses. In order to evaluate the fatigue lives of marine structures accurately, it is necessary to take into account the load histories induced by sea waves, which may be composed of a random sequence of certain clustered loads with variable stress range. In the proposed crack growth model, the crack opening and closure behavior is simulated by using the modified strip yielding model, and the effective tensile plastic stress intensity range, ΔK RP, is calculated by considering the contact of plastic wake along the crack surfaces. The adequacy of the proposed crack growth model is examined by comparison with fatigue tests under non-constant-amplitude loading. The usefulness of the developed method is demonstrated for a ship structural detail under certain simulated load sequences. It is shown that the fatigue crack growth of a ship structure is significantly retarded due to the load interaction effects, so that the conventional method for fatigue life assessment may predict a relatively conservative fatigue life of a structure.  相似文献   

7.
It is of continuing importance for ship structural design to establish a system to compute the growth behavior of fatigue cracks propagating in structural details. In the present paper, a simulation program is developed for multiple fatigue cracks propagating in a three-dimensional stiffened panel structure, where it can predict fatigue crack lives and paths by taking into account the interaction of multiple cracks, load shedding during crack propagation and welding residual stress. Various fatigue crack propagations in longitudinal stiffeners of ship structures are investigated by both the present simulation method and experiments. From these results, it is found that the crack propagation may considerably change, depending on the loading conditions, structural details and residual stress distributions. This means that one could possibly manage to avoid fatal damage of the skin-plate by properly designing the structural details. Furthermore, these results may imply a possibility to realize a rational fatigue crack management if one can estimate the fatigue crack-propagation behavior during the ship lifecycle. The present simulation program may offer a useful numerical tool for this purpose.  相似文献   

8.
文章旨在研究大范围屈服下船体缺口板的裂纹尖端张口位移.基于弹塑性断裂力学理论,建立了循环载荷下船体缺口板CTOD理论模型.进而,对于船用高强度钢AH36进行低周疲劳试验研究,对于影响裂纹尖端张口位移的参数,如应力比、应力幅和平均应力进行了深入探讨.  相似文献   

9.
武锐锋  黄小平 《船舶力学》2012,16(5):549-556
肘板趾端是船舶与海洋结构的疲劳热点。文章用三维有限元分析了趾端表面裂纹应力强度因子修正系数的变化规律,并与BS7910推荐的典型节点表面裂纹应力强度因子公式计算结果作了对比,结果表明趾端表面裂纹应力强度因子沿深度方向的放大系数和T型节点相差很小,而表面端点应力强度因子修正系数则当裂纹长度在肘板厚度范围内时和T型节点相差很小,超出后则相差较大。以某客滚船上肘板趾端应力范围长期分布服从Weibull分布,产生系列均值为零的应力幅,应力强度因子分别采用有限元结果和BS7910中T型接头公式进行计算,采用单一曲线模型计算该趾端表面裂纹的裂纹扩展。计算等效应力强度因子幅时,考虑焊接残余应力的影响。计算结果表明以T型接头的公式计算趾端表面裂纹应力强度因子和有限元结果相差很小。建议将T型节点表面裂纹应力强度因子计算公式用于趾端表面裂纹应力强度因子的计算,并采用单一曲线模型对随机波浪载荷下作用下船舶典型节点疲劳裂纹的扩展寿命进行了预报。  相似文献   

10.
大型船舶结构的疲劳强度校核方法   总被引:3,自引:0,他引:3  
传统的船舶结构疲劳强度校核一般只考虑高周疲劳而忽略了低周疲劳。随着船舶结构向大型化发展以及最近海损事故的发生,低周疲劳问题引起了船舶行业的广泛关注。Urm等人于2004年对装卸载引起的油轮船体结构的低周疲劳问题进行了研究,并给出了计算方法,但具体的计算结果没有给出,许多问题没有解决,因此有必要对船舶结构低周疲劳的原因及校核方法进行深入的研究。针对这一问题,首先分析了引起船舶结构低周疲劳的原因;其次,对现有的S-N曲线外推得到低寿命区S-N曲线的可行性进行了分析,并将外推得到的低寿命区段曲线和经过试验验证的低周疲劳寿命曲线进行了比较;最后分析了波浪载荷等引起的小幅疲劳载荷以及满载和压载引起的大幅疲劳载荷导致的疲劳损伤的相互作用,从而提出了一种非线性累积计算模型。  相似文献   

11.
Compared with thick plate welded joint, the welding joint of thin plate will produce initial deformation due to its low bending rigidity. The existence of initial deformation will cause the welded structure to produce secondary bending effect, which will produce greater stress magnification effect at the weld toe and seriously affect the fatigue strength of thin plate welded joints. Therefore, based on the correction formula of thick plate, considering the influence of initial deformation and geometric nonlinearity of thin plate, this paper deduces the stress magnification factor formula at the weld toe of T-shaped and cruciform specimens. The accuracy of the revised formula is further verified by comparing the notch stress calculated by the modified formula with the FE results. Finally, the modified formula is applied to the notch stress and fatigue evaluation of typical thin plate welded joints respectively. The results show that the proposed notch stress calculation formula can fully consider the stress amplification effect of thin plate structure, and can be used to quickly evaluate the notch stress field and fatigue strength of thin plate welded joints.  相似文献   

12.
Ships belong to those welded structures which are prone to fatigue due to high cyclic loads. Different approaches exist for the fatigue strength assessment which are varying between the industrial sectors. Therefore, deeper fatigue strength investigations were performed in Germany within an industry-wide joint research project aiming at the harmonization of the approaches. Regarding ship structures, two types were selected for full-scale tests. The first concerned web frame corners being typical for roll-on/roll-off ships (ro/ro) ships, from which three models were tested under constant amplitude loading. The second type was the intersection between longitudinals and transverse web frames, which recently showed fatigue failures in containerships. Five models were tested, three under constant and two under variable amplitude loading. All tests showed a relatively long crack propagation phase after first cracks had appeared, calling for a reasonable failure criterion. For the numerical analysis, the structural hot-spot stress as well as the effective notch stress approach have been applied. The latter allows the consideration of the weld shape which could partly explain differences in the observed and calculated failure behaviour. Another factor is the distribution of welding-induced residual stresses, which obviously affected the failure behaviour in the web frame corner as well. Insofar the investigations give a good insight into the strength behaviour of complex welded structures and into current problems and opportunities offered by numerical analyses.  相似文献   

13.
14.
船舶等许多工程结构在服役过程中的受载荷历程是一个随机过程.而变幅载荷下的载荷相互作用对疲劳裂纹扩展寿命将产生显著的影响.因此研究随机载荷作用下的裂纹扩展及定量计算对船舶结构的疲劳寿命预测的可靠性是十分重要的.该文提出了一个基于有效应力强度因子,以应力比和裂纹尖端塑性区尺寸为主要参数的随机载荷作用下疲劳寿命预测模型.该模型用于预测几种载荷谱作用下的裂纹扩展试验,结果表明预测结构和实验结果符合得很好.  相似文献   

15.
《Marine Structures》2002,15(3):233-250
Reliability-based design analysis of the fatigue life of the connectors of the five sections of the 2-km long US Mobile Offshore Base (MOB) is demonstrated. A performance function is defined in terms of the nominal stress range, inherent defect or starter crack, and appropriate material properties, which are considered random variables. The reliability analysis is performed for a sea state 1–8 (SS1–8) random loading having a Gumbel distribution. Where possible, uncertainty data for random variables are obtained from published data relating to the fatigue of metal and metal alloys. Otherwise, judgmental coefficients of variation are prescribed for purposes of demonstration. The fatigue life is assumed to follow the Weibull distribution. The reliability function is defined in terms of the mean life and the total uncertainty in the fatigue life. Preliminary reliability calculations suggest that current design stress levels be reduced to meet the current fatigue life target reliability level for the MOB connectors. An illustrative design is demonstrated and the metal selected for a fatigue design of the connectors for 10 million cycles with a reliability of 0.99 at a nominal stress of 203 MPa is HY-130 steel.  相似文献   

16.
本文考虑焊接残余应力的影响,给出包含裂纹萌生和裂纹扩展全过程的载人深潜器耐压球壳疲劳寿命预报方法,分别基于局部应力-应变法和能计及负应力比效应的裂纹扩展单一曲线模型预报了耐压球壳的工艺疲劳寿命和使用疲劳寿命,研究焊接残余应力大小对球壳疲劳寿命的影响。结果表明,忽略拉伸残余应力的影响将导致疲劳寿命预测结果偏于危险;耐压球壳整体受压时,拉伸残余应力使得球壳局部区域承受拉-压循环载荷,计算使用疲劳寿命过程中须考虑其影响;降低拉伸残余应力可有效提高耐压球壳的疲劳寿命。  相似文献   

17.
As the size of ship has grown rapidly, the importance of exact fatigue strength assessment has been recognized more and more. High concern about fatigue crack often raises target fatigue life to two or three times of ship lifetime. This leads to the use of very thick plates to reduce dynamic stress range or the application of weld toe grinding to reduce stress concentration or removing weld defects. However, such measures can cause some troubles in fabrication process. As a fatigue strength assessment procedure, full stochastic fatigue analysis based on wave loads analysis has been recommended due to its high accuracy and straightforward approach. However, its huge computing time hinders a ship designer from making iterative explorations for a better design to minimize the use of aforementioned measures.This paper proposes an efficient approach to optimize plate thicknesses around hot spots and the applications of weld toe grinding with meeting the required target fatigue life based on the full stochastic fatigue assessment. Two conflicting objectives are taken into consideration; to minimize steel weight and to minimize total weld toe grinding length. Whether to employ weld toe grinding or not for a hot spot can be seen as a selection variable. In order to treat such selection variables along with continuous variables in the multi-objective optimization, Multi-objective Genetic Algorithm (MOGA) is introduced. This paper also employs adaptive approximation framework to resolve the computational burden of the full stochastic fatigue analysis in the optimization. The strategy to refit approximations iteratively can minimize the required number of analysis. A convergence criterion of the adaptive approximation framework is newly proposed considering the feature of discrete objective function attributed to the introduction of selection variables. One of the objective functions, toe grinding length, is purely depending on how many hot spots toe grindings are applied to. The proposed approach is applied to a liquid dome opening problem of LNG carrier, which is known as one of the most difficult parts to satisfy required fatigue strength due to the stress concentration caused by its large opening and weld attachments on upper deck.  相似文献   

18.
T型接头焊趾表面裂纹应力强度因子的简化计算方法   总被引:5,自引:0,他引:5  
T型接头是船舶与海洋结构物的典型结构形式之一,其焊趾处常常是疲劳热点区域。T型接头焊趾表面裂纹的应力强度因子是船舶与海洋结构的、基于断裂力学安全评定和疲劳寿命预测的基础。本文对T型接头表面裂纹应力强度因子的计算方法,尤其是Bow ness等人提出的T型接头焊趾表面裂纹应力强度因子的计算公式进行了分析,在此基础上导出了形式简单,物理意义明确的T型接头焊趾表面裂纹应力强度因子的简化计算公式,并和相关的应力强度因子的计算结果进行了比较,证明了本文简化方法的可行性。  相似文献   

19.
船舶典型结构焊接残余应力的有限元分析   总被引:1,自引:0,他引:1  
李永正  沈杰  窦培林 《船舶》2012,23(4):54-59
在船舶建造中,会有大量的纵骨对接焊缝,存在复杂的焊接残余应力,对结构的极限强度及疲劳寿命有一定影响。该文运用有限元软件ANSYS的APDL语言编写出相应的计算程序,对平板对接焊进行数值模拟,并与试验值进行对比分析。在此基础上,对船舶典型纵骨对接焊进行数值模拟分析,得到相应的残余应力的分布规律。  相似文献   

20.
设计了一种含局部减薄半椭圆缺口的紧凑拉伸试样(ECT),以模拟压力容器接管区结构,并对16MnR钢的ECT试样进行了不同应力比的恒幅低周疲劳裂纹扩展试验.结果表明:ECT试样具有类似压力容器接管区的高应变分布场;低周疲劳裂纹扩展速率与由线积分定义计算的循环J积分,△J在双对数坐标中呈良好线性相关,且回归的材料参数与相同材质的高周疲劳试验获得的Paris常数基本一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号