首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lamble  Dave  Rajalin  Sirpa  Summala  Heikki 《Transportation》2002,29(3):223-236
This paper reviews two road-user surveys on the use of mobile phones on the road in Finland where the mobile phone ownership rate is highest in the world (70% in August 2000). From 1998 to 1999 the proportion of drivers that chose to use a mobile phone while driving rose from 56% to 68%, while the proportion of phone using drivers who experienced dangerous situations due to phone use rose from 44% to 50%. The proportion of drivers who used their phones in some way to benefit safety on the road remained at about 55%. The youngest, novice drivers had the highest level of phone usage of all age categories. Over 48% of the interviewees believed that the government should ban the use of hand-held mobile phones while driving, and another 27% believed that all types of mobile phone use should be banned while driving. Those drivers who used their phones the most each day were more likely to want some form of restrictions, than those who had lower usage. This is a strong message to the elected lawmakers and raises the problem of exactly how regulatory bodies would go about controlling the future growth of new driver support and non-driving related communication devices in road vehicles. It was concluded that legislating for hands-free use only would be a reasonable course of action. Mandating that the current generation of equipment should be optimized for hands-free use should result in future generations of in-vehicle equipment also being optimized for hands-free use as a minimum criterion.  相似文献   

2.
Abstract

This paper investigates the effects of mobile phone use while driving on traffic speed and headways, with particular focus on young drivers. For this purpose, a field survey was carried out in real road traffic conditions, in which drivers' speeds and headways were measured while using or not using a mobile phone. The survey took place within a University Campus area, allowing to distinguish between settings approximating to either free flow or interrupted flow conditions. Linear and loglinear regression methods were used to investigate the effects of mobile phone use and several other young driver characteristics, such as gender, driving experience and annual distance travelled, on vehicle speeds and headways. Separate models were developed for average free flow, interrupted flow, as well as for total average speed. Results show that mobile phone use leads to a statistically significant reduction in traffic speeds of young drivers in all types of traffic conditions. Furthermore, male and female drivers reduce their speed similarly when using a mobile phone while driving. However, male drivers using their mobile phone drive at lower speeds than female drivers not using their mobile phones. Sensitivity analysis revealed that, among all explanatory variables, the effect of mobile phone use on speed was most important. Accordingly, vehicle headways appear to increase for drivers using their mobile phone. However, this effect could not be statistically validated, due to the strong correlation between speed and headway.  相似文献   

3.
Phone use during driving causes decrease in situation awareness and delays response to the events happening in driving environment which may lead to accidents. Reaction time is one of the most suitable parameters to measure the effect of distraction on event detection performance. Therefore, this paper reports the results of a simulator study which analysed and modelled the effects of mobile phone distraction upon reaction time of the Indian drivers belonging to three different age groups. Two different types of hazardous events: (1) pedestrian crossing event and (2) road crossing event by parked vehicles were included for measuring drivers’ reaction times. Four types of mobile phone distraction tasks: simple conversation, complex conversation, simple texting and complex texting were included in the experiment. Two Weibull AFT (Accelerated Failure Time) models were developed for the reaction times against both the events separately, by taking all the phone use conditions and various other factors (such as age, gender, and phone use habits during driving) as explanatory variables. The developed models showed that in case of pedestrian crossing event, the phone use tasks: simple conversation, complex conversation, simple texting and complex texting caused 40%, 95%, 137% and 204% increment in the reaction times and in case of road crossing event by parked vehicles, the tasks caused 48%, 65%, 121% and 171% increment in reaction times respectively. Thus all the phone use conditions proved to be the most significant factors in degrading the driving performance.  相似文献   

4.
Driver cognitive distraction (e.g., hand-free cell phone conversation) can lead to unapparent, but detrimental, impairment to driving safety. Detecting cognitive distraction represents an important function for driver distraction mitigation systems. We developed a layered algorithm that integrated two data mining methods—Dynamic Bayesian Network (DBN) and supervised clustering—to detect cognitive distraction using eye movement and driving performance measures. In this study, the algorithm was trained and tested with the data collected in a simulator-based study, where drivers drove either with or without an auditory secondary task. We calculated 19 distraction indicators and defined cognitive distraction using the experimental condition (i.e., “distraction” as in the drives with the secondary task, and “no distraction” as in the drives without the secondary task). We compared the layered algorithm with previously developed DBN and Support Vector Machine (SVM) algorithms. The results showed that the layered algorithm achieved comparable prediction performance as the two alternatives. Nonetheless, the layered algorithm shortened training and prediction time compared to the original DBN because supervised clustering improved computational efficiency by reducing the number of inputs for DBNs. Moreover, the supervised clustering of the layered algorithm revealed rich information on the relationship between driver cognitive state and performance. This study demonstrates that the layered algorithm can capitalize on the best attributes of component data mining methods and can identify human cognitive state efficiently. The study also shows the value in considering the supervised clustering method as an approach to feature reduction in data mining applications.  相似文献   

5.
As of November 2008, the number of cell phone subscribers in the US exceeded 267 million, nearly three times more than the 97 million subscribers in June 2000. This rapid growth in cell phone use has led to concerns regarding their impact on driver performance and road safety. Numerous legislative efforts are under way to restrict hand-held cell phone use while driving. Since 1999, every state has considered such legislation, but few have passed primary enforcement laws. As of 2008, six states, the District of Columbia (DC), and the Virgin Islands have laws banning the use of hand-held cell phones while driving. A review of the literature suggests that in laboratory settings, hand-held cell phone use impairs driver performance by increasing tension, delaying reaction time, and decreasing awareness. However, there exists insufficient evidence to prove that hand-held cell phone use increases automobile-accident-risk. In contrast to other research in this area that uses questionnaires, tests, and simulators, this study analyzes the impact of hand-held cell phone use on driving safety based on historical automobile-accident-risk-related data and statistics, which would be of interest to transportation policy-makers. To this end, a pre-law and post-law comparison of automobile accident rate measures provides one way to assess the effect of hand-held cell phone bans on driving safety; this paper provides such an analysis using public domain data sources. A discussion of what additional data are required to build convincing arguments in support of or against legislation is also provided.  相似文献   

6.
This high-fidelity driving simulator study used a paired comparison design to investigate the effectiveness of 12 potential eco-driving interfaces. Previous work has demonstrated fuel economy improvements through the provision of in-vehicle eco-driving guidance using a visual or haptic interface. This study uses an eco-driving assistance system that advises the driver of the most fuel efficient accelerator pedal angle, in real time. Assistance was provided to drivers through a visual dashboard display, a multimodal visual dashboard and auditory tone combination, or a haptic accelerator pedal. The style of advice delivery was varied within each modality. The effectiveness of the eco-driving guidance was assessed via subjective feedback, and objectively through the pedal angle error between system-requested and participant-selected accelerator pedal angle. Comparisons amongst the six haptic systems suggest that drivers are guided best by a force feedback system, where a driver experiences a step change in force applied against their foot when they accelerate inefficiently. Subjective impressions also identified this system as more effective than a stiffness feedback system involving a more gradual change in pedal feedback. For interfaces with a visual component, drivers produced smaller pedal errors with an in-vehicle visual display containing second order information on the required rate of change of pedal angle, in addition to current fuel economy information. This was supported by subjective feedback. The presence of complementary audio alerts improved eco-driving performance and reduced visual distraction from the roadway. The results of this study can inform the further development of an in-vehicle assistance system that supports ‘green’ driving.  相似文献   

7.
This paper explores how to optimally locate public charging stations for electric vehicles on a road network, considering drivers’ spontaneous adjustments and interactions of travel and recharging decisions. The proposed approach captures the interdependency of different trips conducted by the same driver by examining the complete tour of the driver. Given the limited driving range and recharging needs of battery electric vehicles, drivers of electric vehicles are assumed to simultaneously determine tour paths and recharging plans to minimize their travel and recharging time while guaranteeing not running out of charge before completing their tours. Moreover, different initial states of charge of batteries and risk-taking attitudes of drivers toward the uncertainty of energy consumption are considered. The resulting multi-class network equilibrium flow pattern is described by a mathematical program, which is solved by an iterative procedure. Based on the proposed equilibrium framework, the charging station location problem is then formulated as a bi-level mathematical program and solved by a genetic-algorithm-based procedure. Numerical examples are presented to demonstrate the models and provide insights on public charging infrastructure deployment and behaviors of electric vehicles.  相似文献   

8.
9.
The integration of internet and mobile phones has opened the door to a new wave of utilizing private vehicles as probes not only for performance evaluation but for traffic control as well, gradually replacing the role of traffic surveillance systems as the dominant source of traffic data. To prepare for such a paradigm shift, one needs to overcome some key institutional barriers, in particular, the privacy issue. A Highway Voting System (HVS) is proposed to address this issue in which drivers provide link- and/or path-based vehicle data to the traffic management system in the form of “votes” in order to receive favorable service from traffic control. The proposed HVS offers a platform that links data from individual vehicles directly with traffic control. In the system, traffic control responds to voting vehicles in a way similar to the current system responding to prioritized vehicles and providing the requested services accordingly. We show in the paper that the proposed “voting” system can effectively resolve the privacy issue which often hampers traffic engineers from getting detailed data from drivers. Strategies to entice drivers into “voting” so as to increase the market penetration level under all traffic conditions are discussed. Though the focus of the paper is on addressing the institutional issues associated with data acquisition from individual vehicles, other research topics associated with the proposed system are identified. Two examples are given to demonstrate the impact of the proposed system on algorithm development and traffic control.  相似文献   

10.
An increasing number of legislative efforts have been undertaken to prohibit the use of hand-held wireless devices while driving. As of July 2012, ten states and the District of Columbia enforce laws banning the use of hand-held cell phones while driving. Thirty-nine states and the District of Columbia have banned text messaging while driving. Recent studies of driver behavior suggest that hand-held wireless device usage negatively impacts driver performance. However few studies at the aggregate level address the plausible link between the use of hand-held wireless devices while driving, increased risk of automobile accidents, and government legislative efforts to reduce such risk. This paper analyzes data at the aggregate level and builds a regression model to estimate the long term accident rate reduction due to a hand-held ban. This model differs from previous studies, which consider short term accident rate reduction, by considering time trends in the accident rate due to the ban. Additionally, counties considered in this analysis are placed into groups based on driver density, defined by the number of licensed drivers per centerline mile of roadway, and a separate analysis is performed within these groups. This approach allows one to better quantify the effect of hand-held bans in counties of different driver densities. Results from this paper suggest that bans on hand-held wireless device use while driving reduce the rate of personal injury accidents in counties with high levels of driver density, but may increase accident rates in counties with low driver density levels. These results can inform transportation policymakers interested in reducing automobile-accident-risk attributable to the use of hand-held wireless devices while driving.  相似文献   

11.
Adaptive Cruise Control systems have been developed and introduced into the consumer market for over a decade. Among these systems, fully-adaptive ones are required to adapt their behaviour not only to traffic conditions but also to drivers’ preferences and attitudes, as well as to the way such preferences change for the same driver in different driving sessions. This would ideally lead towards a system where an on-board electronic control unit can be asked by the driver to calibrate its own parameters while he/she manually drives for a few minutes (learning mode). After calibration, the control unit switches to the running mode where the learned driving style is applied. The learning mode can be activated by any driver of the car, for any driving session and each time he/she wishes to change the current driving behaviour of the cruise control system.The modelling framework which we propose to implement comprises four layers (sampler, profiler, tutor, performer). The sampler is responsible for human likeness and can be calibrated while in learning mode. Then, while in running mode, it works together with the other modelling layers to implement the logic. This paper presents the overall framework, with particular emphasis on the sampler and the profiler that are explained in full mathematical detail. Specification and calibration of the proposed framework are supported by the observed data, collected by means of an instrumented vehicle. The data are also used to assess the proposed framework, confirming human-like and fully-adaptive characteristics.  相似文献   

12.
This paper proposes a behavior-based consistency-seeking (BBCS) model as an alternative to the dynamic traffic assignment paradigm for the real-time control of traffic systems under information provision. The BBCS framework uses a hybrid probabilistic–possibilistic model to capture the day-to-day evolution and the within-day dynamics of individual driver behavior. It considers heterogeneous driver classes based on the broad behavioral characteristics of drivers elicited from surveys and past studies on driver behavior. Fuzzy logic and if–then rules are used to model the various driver behavior classes. The approach enables the modeling of information characteristics and driver response to be more consistent with the real-world. The day-to-day evolution of driver behavior characteristics is reflected by updating the appropriate model parameters based on the current day’s experience. The within-day behavioral dynamics are reactive and capture drivers’ actions vis-à-vis the ambient driving conditions by updating the weights associated with the relevant if–then rules. The BBCS model is deployed by updating the ambient driver behavior class fractions so as to ensure consistency with the real-time traffic sensor measurements. Simulation experiments are conducted to investigate the real-time applicability of the proposed framework to a real-world network. The results suggest that the approach can reasonably capture the within-day variations in driver behavior model parameters and class fractions in the traffic stream. Also, they indicate that deployment-capable information strategies can be used to influence system performance. From a computational standpoint, the approach is real-time deployable.  相似文献   

13.
This research study was designed to assess by simulation the efficacy of incident detection by cellular phone call-in programs. The assessment was conducted by varying the proportion of drivers with cellular phones on the highway so as to mirror the cellular industry statistics that show a continued growth of ownership of cellular phones in the United States. An analytical model, which combined simulation and the limited field data available in the literature, was used to determine measures of effectiveness of the cellular phone-based detection system. The results showed that a cellular phone detection system offers fast incident detection times and higher detection rates for both shoulder and lane blocking incidents. For example, in moderate traffic flow (i.e. 1,550 vehicles per hour per lane), 90 percent of incidents blocking two lanes were detected in 1.5 minutes when the proportion of drivers with cellular phones was one out of 10 drivers, even with only 20 percent of them willing to report incidents. When the current proportion of cellular ownership, i.e. 1 out of 3, was used in the simulation, the detection time improved to 0.8 minutes. The simulation analysis of incident detection by cellular phones also showed that there is a direct relationship between the probability of detection and the detection time; that is, the specification of a higher detection rate resulted in slower detection times. This is in sharp contrast with the results of field study of automatic incident detection (AID) systems which demonstrated an inverse relationship between probability of detection and detection time. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
The growing need of the driving public for accurate traffic information has spurred the deployment of large scale dedicated monitoring infrastructure systems, which mainly consist in the use of inductive loop detectors and video cameras. On-board electronic devices have been proposed as an alternative traffic sensing infrastructure, as they usually provide a cost-effective way to collect traffic data, leveraging existing communication infrastructure such as the cellular phone network. A traffic monitoring system based on GPS-enabled smartphones exploits the extensive coverage provided by the cellular network, the high accuracy in position and velocity measurements provided by GPS devices, and the existing infrastructure of the communication network. This article presents a field experiment nicknamed Mobile Century, which was conceived as a proof of concept of such a system. Mobile Century included 100 vehicles carrying a GPS-enabled Nokia N95 phone driving loops on a 10-mile stretch of I-880 near Union City, California, for 8 h. Data were collected using virtual trip lines, which are geographical markers stored in the handset that probabilistically trigger position and speed updates when the handset crosses them. The proposed prototype system provided sufficient data for traffic monitoring purposes while managing the privacy of participants. The data obtained in the experiment were processed in real-time and successfully broadcast on the internet, demonstrating the feasibility of the proposed system for real-time traffic monitoring. Results suggest that a 2–3% penetration of cell phones in the driver population is enough to provide accurate measurements of the velocity of the traffic flow. Data presented in this article can be downloaded from http://traffic.berkeley.edu.  相似文献   

15.
Recent advances in technology are changing the way how everyday activities are performed. Technologies in the traffic domain provide diverse instruments of gathering and analysing data for more fuel-efficient, safe, and convenient travelling for both drivers and passengers. In this article, we propose a reference architecture for a context-aware driving assistant system. Moreover, we exemplify this architecture with a real prototype of a driving assistance system called Driving coach. This prototype collects, fuses and analyses diverse information, like digital map, weather, traffic situation, as well as vehicle information to provide drivers in-depth information regarding their previous trip along with personalised hints to improve their fuel-efficient driving in the future. The Driving coach system monitors its own performance, as well as driver feedback to correct itself to serve the driver more appropriately.  相似文献   

16.
Abstract

New technologies, especially advances in telecommunications, have had profound impacts on everyday life and brought even greater changes to some business models. Taxis represent one of the major modes of transportation in urban areas but they face a number of problems, including their environmental impacts. The status of the taxi industry in Taiwan is revealed and analyzed in this study. A new business model for the extensive and popular use of smart phones is proposed. However, it is important to know whether their use is both effective and safe. Two field experiments were executed to examine the effects on taxi drivers of using a navigation system installed in a GPS PDA phone. The results revealed that the efficiency of drivers using such a portable navigation system was better than those relying on paper maps in unfamiliar urban areas. Furthermore, performance in terms of safety was also better than those who used an on-board navigation system. In summary, incorporating e-technology can promote a taxi company's competitiveness and a driver's performance and safety as well as offer environmental benefits.  相似文献   

17.
The present paper proposes a conceptual framework for the driver’s visual–spatial perceptual processes. Based on a theoretical analysis of driving proposed by Gibson and Crooks [(1938). A theoretical field-analysis of automobile-driving. The American Journal of Psychology, 51, 453–471. doi:10.2307/1416145], the developed field of safe travel (FoST) framework suggests that at any moment the driver constructs a “field” by integrating two perceptual entities: (i) the possible available spatial fields for locomotion and (ii) the driver’s mental image of ego-vehicle outer-line and motion dynamics. This framework is used to reinterpret in a unified way a number of disparate research findings reported in the literature concerning specific driving sub-tasks (e.g. lane keeping and car following). It is argued that the FoST framework may be used to predict drivers’ behaviour in various traffic/situation environments based on their prioritisation between the above two perceptual entities. Implications of the proposed framework at a theoretical and practical level, in view of the future of driving with multiple levels of automation, are also discussed.  相似文献   

18.
It is known that adverse weather conditions can affect driver performance due to reduction in visibility and slippery surface conditions. Lane keeping is one of the main factors that might be affected by weather conditions. Most of the previous studies on lane keeping have investigated driver lane-keeping performance from driver inattention perspective. In addition, the majority of previous lane-keeping studies have been conducted in controlled environments such as driving simulators. Therefore, there is a lack of studies that investigate driver lane-keeping ability considering adverse weather conditions in naturalistic settings. In this study, the relationship between weather conditions and driver lane-keeping performance was investigated using the SHRP2 naturalistic driving data for 141 drivers between 19 and 89 years of age. Moreover, a threshold was introduced to differentiate lane keeping and lane changing in naturalistic driving data. Two lane-keeping models were developed using the logistic regression and multivariate adaptive regression splines (MARS) to better understand factors affecting driver lane-keeping ability considering adverse weather conditions. The results revealed that heavy rain can significantly increase the standard deviation of lane position (SDLP), which is a very widely used method for analyzing lane-keeping ability. It was also found that traffic conditions, driver age and experience, and posted speed limits have significant effects on driver lane-keeping ability. An interesting finding of this study is that drivers have a better lane-keeping ability in roadways with higher posted speed limits. The results from this study might provide better insights into understanding the complex effect of adverse weather conditions on driver behavior.  相似文献   

19.
This paper presents an approach to investigating the impact of information and communication technologies (ICTs) on travel behaviour and its environmental effects. The paper focuses on the spatial dispersion of out-of-home activities and travel (activity space) and greenhouse gas emissions (GHGs) at the level of the individual. An original method, combining spatial analysis in a geographic information system with advanced regression techniques, is proposed to explore these potentially complex relationships in the case of access to mobile phones and the internet, while taking into account the influence of socio-economics and built environment factors. The proposed methodology is tested using a 7-day activity-based survey in Quebec City in 2003?C2004, a juncture of particular interest because these ICTs had recently crossed the threshold of 40?% (mobile phone) and 60?% (home-based internet) penetration at the time. The study period also largely pre-dates the era of mobile internet access. Among other results, socio-demographic factors were found to significantly affect both ICT access and travel out-comes. The built environment, represented by neighbourhood typologies, also played an important role. However, it was found that after controlling for the self-selection effect, built environment and socio-demographics, those who had a mobile phone available produced 30?% more GHGs during the observed week than those who did not. This higher level of GHG pro-duction was accompanied by a 12?% higher measure of activity dispersion. On the other hand, having internet access at home was associated with lower GHGs (?19?%) and lesser activity dispersion (?25?%). Possibly, mobile phones enable individuals to cover more space and produce more emissions, while the internet provides opportunities to stay at home or avoid motorized travel thus reducing emissions. The estimated effects of having a mobile phone were not only negative but also larger in magnitude from the environmental point of view than those of fixed internet access. However, the results of this study also suggest that access to mobile phones and internet may have substantial and compensatory effects at the individual level that are undetected when using model structures that do not take into account that unobserved factors may influence both ICT choices and travel outcomes.  相似文献   

20.
This paper develops, implements and tests a framework for driving behavior modeling that integrates the various decisions, such as acceleration, lane changing and gap acceptance. Furthermore, the proposed framework is based on the concepts of short-term goal and short-term plan. Drivers are assumed to conceive and perform short-term plans in order to accomplish short-term goals. This behavioral framework supports a more realistic representation of the driving task, since it captures drivers’ planning capabilities and allows decisions to be based on anticipated future conditions.An integrated driving behavior model, which utilizes these concepts, is developed. The model captures both lane changing and acceleration behaviors. The driver’s short-term goal is defined by the target lane. Drivers who wish to change lanes but cannot change lanes immediately, select a short-term plan to perform the desired lane change. Short-term plans are defined by the various gaps in traffic in the target lane. Drivers adapt their acceleration behavior to facilitate the lane change using the target gap. Hence, inter-dependencies between lane changing and acceleration behaviors are captured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号