首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In this paper, we develop a new framework for strategic planning purposes to calculate railway infrastructure occupation and capacity consumption in networks, independent of a timetable. Furthermore, a model implementing the framework is presented. In this model different train sequences are generated and assessed to obtain timetable independence. A stochastic simulation of delays is used to obtain the capacity consumption. The model is tested on a case network where four different infrastructure scenarios are considered. Both infrastructure occupation and capacity consumption results are obtained efficiently with little input. The case illustrates the model’s ability to quantify the capacity gain from infrastructure scenario to infrastructure scenario which can be used to increase the number of trains or improve the robustness of the system.  相似文献   

2.
With the increasing traffic volumes in European railway networks and reports on capacity deficiencies that cause reliability problems, the need for efficient disturbance management becomes evident. This paper presents a heuristic approach for railway traffic re-scheduling during disturbances and a performance evaluation for various disturbance settings using data for a large part of the Swedish railway network that currently experiences capacity deficiencies. The significance of applying certain re-scheduling objectives and their correlation with performance measures are also investigated. The analysis shows e.g. that a minimisation of accumulated delays has a tendency to delay more trains than a minimisation of total final delay or total delay costs. An experimental study of how the choice of planning horizon in the re-scheduling process affects the network on longer-term is finally presented. The results indicate that solutions which are good on longer-term can be achieved despite the use of a limited planning horizon. A 60 min long planning horizon was sufficient for the scenarios in the experiments.  相似文献   

3.
Unexpected disruptions occur for many reasons in railway networks and cause delays, cancelations, and, eventually, passenger inconvenience. This research focuses on the railway timetable rescheduling problem from a macroscopic point of view in case of large disruptions. The originality of our approach is to integrate three objectives to generate a disposition timetable: the passenger satisfaction, the operational costs and the deviation from the undisrupted timetable. We formulate the problem as an Integer Linear Program that optimizes the first objective and includes ε-constraints for the two other ones. By solving the problem for different values of ε, the three-dimensional Pareto frontier can be explored to understand the trade-offs among the three objectives. The model includes measures such as canceling, delaying or rerouting the trains of the undisrupted timetable, as well as scheduling emergency trains. Furthermore, passenger flows are adapted dynamically to the new timetable. Computational experiments are performed on a realistic case study based on a heavily used part of the Dutch railway network. The model is able to find optimal solutions in reasonable computational times. The results provide evidence that adopting a demand-oriented approach for the management of disruptions not only is possible, but may lead to significant improvement in passenger satisfaction, associated with a low operational cost of the disposition timetable.  相似文献   

4.
Knock-on delay, which is the key factor in punctuality of railway service, is mainly related to two factors including the quality of timetable in the planning phase and disturbances which may result in unscheduled trains’ waiting or meeting in operation phase. If the delay root cause and the interactions among the factors responsible for these can be clearly clarified, then the punctuality of railway operations can be enhanced by taking reactions such as timetable adjustment, rescheduling or rerouting of railway traffic in case of disturbances. These delay reasons can be used to predict the lengths of railway disruptions and effective reactions can be applied in disruption management. In this work, a delay root cause discovery model is proposed, which integrates heterogeneous railway operation data sources to reconstruct the details of the railway operations. A supervised decision tree method following the machine learning and data mining techniques is designed to estimate the key factors in knock-on delays. It discovers the root cause delay factor by logically analyzing the scheduled or un-scheduled trains meetings and overtaking behaviors, and the subsequent delay propagations. Experiment results show that the proposed decision tree can predict the delay reason with the accuracy of 83%, and it can be further enhance to 90% if the delay cause is only considered “prolonged passengers boarding” and “meeting or overtaking” factors. The delay root cause can be discovered by the proposed model, verified by frequency filtering in operation records, and resolved by the adjustment of timetable which is an important reference for the next timetable rescheduling. The results of this study can be applied to railway operation decision support and disruption management, especially with regard to timetable rescheduling, trains resequencing or rerouting, system reliability analysis, and service quality improvements.  相似文献   

5.
Based on the analysis of the railway system in the Paris region in France, this paper presents a rescheduling problem in which stops on train lines can be skipped and services are retimed to recover when limited disturbances occur. Indeed, in such mass transit systems, minor disturbances tend to propagate and generate larger delays through the shared use of resources, if no action is quickly taken. An integrated Integer Linear Programming model is presented whose objective function minimizes both the recovery time and the waiting time of passengers. Additional criteria related to the weighted number of train stops that are skipped are included in the objective function. Rolling-stock constraints are also taken into account to propose a feasible plan. Computational experiments on real data are conducted to show the impact of rescheduling decisions depending on key parameters such as the duration of the disturbances and the minimal turning time between trains. The trade-off between the different criteria in the objective function is also illustrated and discussed.  相似文献   

6.
Currently most optimization methods for urban transport networks (i) are suited for networks with simplified dynamics that are far from real-sized networks or (ii) apply decentralized control, which is not appropriate for heterogeneously loaded networks or (iii) investigate good-quality solutions through micro-simulation models and scenario analysis, which make the problem intractable in real time. In principle, traffic management decisions for different sub-systems of a transport network (urban, freeway) are controlled by operational rules that are network specific and independent from one traffic authority to another. In this paper, the macroscopic traffic modeling and control of a large-scale mixed transportation network consisting of a freeway and an urban network is tackled. The urban network is partitioned into two regions, each one with a well-defined Macroscopic Fundamental Diagram (MFD), i.e. a unimodal and low-scatter relationship between region density and outflow. The freeway is regarded as one alternative commuting route which has one on-ramp and one off-ramp within each urban region. The urban and freeway flow dynamics are formulated with the tool of MFD and asymmetric cell transmission model, respectively. Perimeter controllers on the border of the urban regions operating to manipulate the perimeter interflow between the two regions, and controllers at the on-ramps for ramp metering are considered to control the flow distribution in the mixed network. The optimal traffic control problem is solved by a Model Predictive Control (MPC) approach in order to minimize total delay in the entire network. Several control policies with different levels of urban-freeway control coordination are introduced and tested to scrutinize the characteristics of the proposed controllers. Numerical results demonstrate how different levels of coordination improve the performance once compared with independent control for freeway and urban network. The approach presented in this paper can be extended to implement efficient real-world control strategies for large-scale mixed traffic networks.  相似文献   

7.
This paper deals with the real-time problem of scheduling and routing trains in a railway network. In the related literature, this problem is usually solved starting from a subset of routing alternatives and computing the near-optimal solution of the simplified routing problem. We study how to select the best subset of routing alternatives for each train among all possible alternatives. The real-time train routing selection problem is formulated as an integer linear programming formulation and solved via an algorithm inspired by the ant colonies’ behavior. The real-time railway traffic management problem takes as input the best subset of routing alternatives and is solved as a mixed-integer linear program. The proposed methodology is tested on two practical case studies of the French railway infrastructure: the Lille terminal station area and the Rouen line. The computational experiments are based on several practical disturbed scenarios. Our methodology allows the improvement of the state of the art in terms of the minimization of train consecutive delays. The improvement is around 22% for the Rouen instances and around 56% for the Lille instances.  相似文献   

8.
Evaluation of green wave policy in real-time railway traffic management   总被引:1,自引:0,他引:1  
In order to face the expected growth of transport demand in the next years, several new traffic control policies have been proposed and analyzed both to generate timetables and to effectively manage the traffic in real-time. In this paper, a detailed optimization model is used to analyze one such policy, called green wave, which consists in letting trains wait at the stations to avoid speed profile modifications in open corridors. Such policy is expected to be especially effective when the corridors are the bottleneck of the network. However, there is a lack of quantitative studies on the real-time effects of using this policy. To this end, this work shows a comparison of the delays obtained when trains are allowed or not to change their speed profile in open corridors. An extensive computational study is described for two practical dispatching areas of the Dutch railway network.  相似文献   

9.
The train trajectory optimization problem aims at finding the optimal speed profiles and control regimes for a safe, punctual, comfortable, and energy-efficient train operation. This paper studies the train trajectory optimization problem with consideration of general operational constraints as well as signalling constraints. Operational constraints refer to time and speed restrictions from the actual timetable, while signalling constraints refer to the influences of signal aspects and automatic train protection on train operation. A railway timetable provides each train with a train path envelope, which consists of a set of positions on the route with a specified target time and speed point or window. The train trajectory optimization problem is formulated as a multiple-phase optimal control model and solved by a pseudospectral method. This model is able to capture varying gradients and speed limits, as well as time and speed constraints from the train path envelope. Train trajectory calculation methods under delay and no-delay situations are discussed. When the train follows the planned timetable, the train trajectory calculation aims at minimizing energy consumption, whereas in the case of delays the train trajectory is re-calculated to track the possibly adjusted timetable with the aim of minimizing delays as well as energy consumption. Moreover, the train operation could be affected by yellow or red signals, which is taken into account in the train speed regulation. For this purpose, two optimization policies are developed with either limited or full information of the train ahead. A local signal response policy ensures that the train makes correct and quick responses to different signalling aspects, while a global green wave policy aims at avoiding yellow signals and thus proceed with all green signals. The method is applied in a case study of two successive trains running on a corridor with various delays showing the benefit of accurate predictive information of the leading train on energy consumption and train delay of the following train.  相似文献   

10.
In this paper, we propose an improved traffic model for simulating train movement in railway traffic. The proposed model is based on optimal velocity car‐following model. In order to test the proposed model, we use it to simulate the train movement with fixed‐block system. In simulations, we analyze and discuss the space–time diagram of railway traffic flow and the trajectories of train movement. Simulation results demonstrate that the proposed model can be successfully used for simulating the train movement in railway traffic. From the space–time diagram, we find some complex phenomena of train flow, which are observed in real railway traffic, such as train delays. By analyzing the trajectories of train movement, some dynamic characteristics of trains can be reproduced. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
The development of railway transportation, especially through the gradual implementation of high-speed European network, is inciting railway companies to design railway movements command and control systems to enhance technical performance in terms of throughput and control of disturbances while simultaneously minimizing operational costs. The new command-control systems must be modular, adaptable and evolutive structures from both functional and geographical viewpoints if they are to satisfy all operational needs. Concurrent research into performance enhancement and cost reduction prescribes a system in which the majority of the “real time” components are aboards the locomotives. This is particularly true for those components used by the train to indicate its own position on the network as well as those enabling it to converse with operational control centers. The initial task is to design a global architecture of the command-control system that satisfies modularity and availability criteria followed by the development of numerous technical components including radar self-location systems and cellular radio transmission networks. The French (SNCF) and German (DB) national railways have implemented a vast program of co-operation aimed at providing valid, proven answers to these problems so as to allow their trains to travel freely on either network.  相似文献   

12.
Optimal rail network infrastructure and rolling stock utilization can be achieved with use of different scheduling tools by extensive planning a long time before actual operations. The initial train timetable takes into account possible smaller disturbances, which can be compensated within the schedule. Bigger disruptions, such as accidents, rolling stock breakdown, prolonged passenger boarding, and changed speed limit cause delays that require train rescheduling. In this paper, we introduce a train rescheduling method based on reinforcement learning, and more specifically, Q-learning. We present here the Q-learning principles for train rescheduling, which consist of a learning agent and its actions, environment and its states, as well as rewards. The use of the proposed approach is first illustrated on a simple rescheduling problem comprising a single-lane track with three trains. The evaluation of the approach is performed on extensive set of experiments carried out on a real-world railway network in Slovenia. The empirical results show that Q-learning lead to rescheduling solutions that are at least equivalent and often superior to those of several basic rescheduling methods that do not rely on learning agents. The solutions are learned within reasonable computational time, a crucial factor for real-time applications.  相似文献   

13.
Based on train scheduling, this paper puts forward a multi-objective optimization model for train routing on high-speed railway network, which can offer an important reference for train plan to provide a better service. The model does not only consider the average travel time of trains, but also take the energy consumption and the user satisfaction into account. Based on this model, an improved GA is designed to solve the train routing problem. The simulation results demonstrate that the accurate algorithm is suitable for a small-scale network, while the improved genetic algorithm based on train control (GATC) applies to a large-scale network. Finally, a sensitivity analysis of the parameters is performed to obtain the ideal parameters; a perturbation analysis shows that the proposed method can quickly handle the train disturbance.  相似文献   

14.
One of the crucial factors in achieving a high punctuality in railway traffic systems, is the ability to effectively reschedule the trains when disturbances occur. The railway traffic rescheduling problem is a complex task to solve both from a practical and a computational perspective. Problems of practically relevant sizes have typically a very large search space, making them time-consuming to solve even for state-of-the-art optimization solvers. Though competitive algorithmic approaches are a widespread topic of research, not much research has been done to explore the opportunities and challenges in parallelizing them. This paper presents a parallel algorithm to efficiently solve the real-time railway rescheduling problem on a multi-core parallel architecture. We devised (1) an effective way to represent the solution space as a binary tree and (2) a novel sequential heuristic algorithm based on a depth-first search (DFS) strategy that quickly traverses the tree. Based on that, we designed a parallel algorithm for a multi-core architecture, which proved to be 10.5 times faster than the sequential algorithm even when run on a single processing core. When executed on a parallel machine with 8 cores, the speed further increased by a factor of 4.68 and every disturbance scenario in the considered case study was solved within 6 s. We conclude that for the problem under consideration, though a sequential DFS approach is fast in several disturbance scenarios, it is notably slower in many other disturbance scenarios. The parallel DFS approach that combines a DFS with simultaneous breadth-wise tree exploration, while being much faster on an average, is also consistently fast across all scenarios.  相似文献   

15.
Travel reliability can play an important role in shaping travelers’ route choice behavior. This paper develops a railway passenger assignment method to capture the reliability-based route choices, where the trains can have stochastic delays. The overall travel reliability has two components: the travel time reliability (of trains) and the associated transfer reliability (of connections). In this context, mean-and-variance-based effective travel cost is adopted to model passengers’ evaluation of different travel options in the railway network. Moreover, passengers are heterogeneous as they may evaluate the effective travel cost differently, and they may have different requirements for the successful transfer probability (if transfers are involved in the trip). The determination of travel time reliability (of trains) is based on the travel delay distribution, and the successful transfer probability is calculated based on the delay probabilities of two trains in the transfer process. An algorithm has been designed for solving the model, and numerical examples are presented to test and illustrate the model.  相似文献   

16.
The focus of this study is to jointly design charging stations and photovoltaic (PV) power plants with time-dependent charging fee, to improve the management of the coupled transportation and power systems. We first propose an efficient and extended label-setting algorithm to solve the EV joint routing and charging problem that considers recharging amount choices at different stations and loop movement cases. Then, a variational inequality problem is formulated to model the equilibrium of EV traffic on transportation networks, and an optimal power flow model is proposed to model the power network flow with PV power plants and optimally serve the EV charging requirements. Based on the above models for describing system states, we then formulate a model to simultaneously design charging stations, PV plants, and time-dependent charging fee. A surrogate-based optimization (SBO) algorithm is adopted to solve the model. Numerical examples demonstrate that the proposed SBO algorithm performs well. Additionally, important insights concerning the infrastructure design and price management of the coupled transportation and power networks are derived accordingly.  相似文献   

17.
The cooperative energy-efficient trajectory planning for multiple high-speed train movements is considered in this paper. We model all the high-speed trains as the agents that can communicate with others and propose a local trajectory planning control model using the Model Predictive Control (MPC) theory. After that we design an online distributed cooperative optimization algorithm for multiple train trajectories planning, under which each train agent can regulate the trajectory planning procedure to save energy using redundancy trip time through tuning ACO’s heuristic information parameter. Compared to the existing literature, the vital distinctions of our work lies not only on the online cooperative trajectory planning but also on the distributed mechanism for multiple high-speed trains. Experimental studies are given to illustrate the effectiveness of the proposed methods with the practical operational data of Wuhan-Guangzhou High-speed Railway in China.  相似文献   

18.
An emerging task in catering services for high-speed railways (CSHR) is to design a distribution system for the delivery of high-quality perishable food products to trains in need. This paper proposes a novel model for integrating location decision making with daily rail catering operations, which are affected by various aspects of rail planning, to meet time-sensitive passenger demands. A three-echelon location routing problem with time windows and time budget constraints (3E-LRPTWTBC) is thus proposed toward formulating this integrated distribution system design problem. This model attempts to determine the capacities/locations of distribution centers and to optimize the number of meals delivered to stations. The model also attempts to generate a schedule for refrigerated cars traveling from distribution centers to rail stations for train loading whereby meals can be catered to trains within tight time windows and sold before a specified time deadline. By relaxing the time-window constraints, a relaxation model that can be solved using an off-the-shelf mixed integer programming (MIP) solver is obtained to provide a lower bound on the 3E-LRPTWTBC. A hybrid cross entropy algorithm (HCEA) is proposed to solve the 3E-LRPTWTBC. A small-scale case study is implemented, which reveals a 9.3% gap between the solution obtained using the HCEA and that obtained using the relaxation model (RM). A comparative analysis of the HCEA and an exhaustive enumeration algorithm indicates that the HCEA shows good performance in terms of computation time. Finally, a case study considering 156 trains on the Beijing-Shanghai high-speed corridor and a large-scale case study considering 1130 trains on the Chinese railway network are addressed in a comprehensive study to demonstrate the applicability of the proposed models and algorithm.  相似文献   

19.
The operation of large dynamic systems such as urban traffic networks remains a challenge in control engineering to a great extent due to their sheer size, intrinsic complexity, and nonlinear behavior. Recently, control engineers have looked for unconventional means for modeling and control of complex dynamic systems, in particular the technology of multi-agent systems whose appeal stems from their composite nature, flexibility, and scalability. This paper contributes to this evolving technology by proposing a framework for multi-agent control of linear dynamic systems, which decomposes a centralized model predictive control problem into a network of coupled, but small sub-problems that are solved by the distributed agents. Theoretical results ensure convergence of the distributed iterations to a globally optimal solution. The framework is applied to the signaling split control of traffic networks. Experiments conducted with simulation software indicate that the multi-agent framework attains performance comparable to conventional control. The main advantages of the multi-agent framework are its graceful extension and localized reconfiguration, which require adjustments only in the control strategies of the agents in the vicinity.  相似文献   

20.
To further improve the utilization rate of railway tracks and reduce train delays, this paper focuses on developing a high-efficiency train routing and timetabling approach for double-track railway corridors in condition that trains are allowable to travel on reverse direction tracks. We first design an improved switchable policy which is rooted in the approaches by Mu and Dessouky (2013), with the analysis of possible delays caused by different path choices. Then, three novel integrated train routing and timetabling approaches are proposed on the basis of a discrete event model and different dispatching rules, including no switchable policy (No-SP), Mu and Dessouky (2013)’s switchable policy (Original-SP) and improved switchable policy (Improved-SP). To demonstrate the performance of the proposed approaches, the heterogeneous trains on Beijing–Shanghai high speed railway are scheduled by aforementioned approaches. The case studies indicate that in comparison to No-SP and Original-SP approaches, respectively, the Improved-SP approach can reduce the total delay of trains up to 44.44% and 73.53% within a short computational time. Moreover, all of the performance criteria of the Improved-SP approach are usually better than those of other two approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号