首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
ABSTRACT

Connected and autonomous vehicle (CAV) technologies are expected to change driving/vehicle behavior on freeways. This study investigates the impact of CAVs on freeway capacity using a microsimulation tool. A four-lane basic freeway segment is selected as the case study through the Caltrans Performance Measurement System (PeMS). To obtain valid results, various driving behavior parameters are calibrated to the real traffic conditions for human-driven vehicles. In particular, the calibration is conducted using genetic algorithm. A revised Intelligent Driver Model (IDM) is developed and used as the car-following model for CAVs. The simulation is conducted on the basic freeway segment under different penetration rates of CAVs and different freeway speed limits. The results show that with an increase in the market penetration rate, freeway capacity increases, and will increase significantly as the speed limit increases.  相似文献   

2.
Under the Connected Vehicle environment where vehicles and road-side infrastructure can communicate wirelessly, the Advanced Driver Assistance Systems (ADAS) can be adopted as an actuator for achieving traffic safety and mobility optimization at highway facilities. In this regard, the traffic management centers need to identify the optimal ADAS algorithm parameter set that leads to the optimization of the traffic safety and mobility performance, and broadcast the optimal parameter set wirelessly to individual ADAS-equipped vehicles. Once the ADAS-equipped drivers implement the optimal parameter set, they become active agents that work cooperatively to prevent traffic conflicts, and suppress the development of traffic oscillations into heavy traffic jams. Measuring systematic effectiveness of this traffic management requires am analytic capability to capture the quantified impact of the ADAS on individual drivers’ behaviors and the aggregated traffic safety and mobility improvement due to such an impact. To this end, this research proposes a synthetic methodology that incorporates the ADAS-affected driving behavior modeling and state-of-the-art microscopic traffic flow modeling into a virtually simulated environment. Building on such an environment, the optimal ADAS algorithm parameter set is identified through a multi-objective optimization approach that uses the Genetic Algorithm. The developed methodology is tested at a freeway facility under low, medium and high ADAS market penetration rate scenarios. The case study reveals that fine-tuning the ADAS algorithm parameter can significantly improve the throughput and reduce the traffic delay and conflicts at the study site in the medium and high penetration scenarios. In these scenarios, the ADAS algorithm parameter optimization is necessary. Otherwise the ADAS will intensify the behavior heterogeneity among drivers, resulting in little traffic safety improvement and negative mobility impact. In the high penetration rate scenario, the identified optimal ADAS algorithm parameter set can be used to support different control objectives (e.g., safety improvement has priority vs. mobility improvement has priority).  相似文献   

3.
In driving simulation, a scenario includes definitions of the road environment, the traffic situation, simulated vehicles’ interactions with the participant’s vehicle and measurements that need to be collected. The scenarios need to be designed in such a way that the research questions to be studied can be answered, which commonly imply exposing the participant for a couple of predefined specific situations that has to be both realistic and repeatable. This article presents an integrated algorithm based on Dynamic Actor Preparation and Automated Action Planning to control autonomous simulated vehicles in the simulation in order to generate predefined situations. This algorithm is thus able to plan driving actions for autonomous vehicles based on specific tasks with relevant contextual information as well as handling longitudinal transportation of simulated vehicles based on the contextual information in an automated manner. The conducted experiment shows that the algorithm is able to guarantee repeatability under autonomous traffic flow. The presented algorithm can benefit not only the driving simulation community, but also relevant areas, such as autonomous vehicle and in-vehicle device design by providing them with an algorithm for target pursue and driving task accomplishment, which can be used to design a human-vehicle cooperation system in the coming era of autonomous driving.  相似文献   

4.
Traffic congestion and energy issues have set a high bar for current ground transportation systems. With advances in vehicular communication technologies, collaborations of connected vehicles have becoming a fundamental block to build automated highway transportation systems of high efficiency. This paper presents a distributed optimal control scheme that takes into account macroscopic traffic management and microscopic vehicle dynamics to achieve efficiently cooperative highway driving. Critical traffic information beyond the scope of human perception is obtained from connected vehicles downstream to establish necessary traffic management mitigating congestion. With backpropagating traffic management advice, a connected vehicle having an adjustment intention exchanges control-oriented information with immediately connected neighbors to establish potential cooperation consensus, and to generate cooperative control actions. To achieve this goal, a distributed model predictive control (DMPC) scheme is developed accounting for driving safety and efficiency. By coupling the states of collaborators in the optimization index, connected vehicles achieve fundamental highway maneuvers cooperatively and optimally. The performance of the distributed control scheme and the energy-saving potential of conducting such cooperation are tested in a mixed highway traffic environment by the means of microscopic simulations.  相似文献   

5.
ABSTRACT

Incidents are a major source of traffic congestion and can lead to long and unpredictable delays, deteriorating traffic operations and adverse environmental impacts. The emergence of connected vehicles and communication technologies has enabled travelers to use real-time traffic information. The ability to exchange traffic information among vehicles has tremendous potential impacts on network performance especially in the case of non-recurrent congestion. To this end, this paper utilizes a microscopic simulation model of traffic in El Paso, Texas to investigate the impacts of incidents on traffic operation and fuel consumption at different market penetration rates (MPR) of connected vehicles. Several scenarios are implemented and tested to determine the impacts of incidents on network performance in an urban area. The scenarios are defined by changing the duration of incidents and the number of lanes closed. This study also shows how communication technology affects network performance in response to congestion. The results of the study demonstrate the potential effectiveness of connected vehicle technology in improving network performance. For an incident with a duration of 900?s and MPR of 80%, total fuel consumption and total travel time decreased by approximately 20%; 26% was observed in network-wide travel time and fuel consumption at 100% MPR.  相似文献   

6.
Information from connected vehicles, such as the position and speed of individual vehicles, can be used to optimize traffic operations at an intersection. This paper proposes such an algorithm for two one-way-streets assuming that only a certain percentage of cars are equipped with this technology. The algorithm enumerates different sequences of cars discharging from the intersection to minimize the objective function. Benefits of platooning (multiple cars consecutively discharging from a queue) and signal flexibility (adaptability to demand) are also considered. The goal is to gain insights about the value (in terms of delay savings) of using connected vehicle technology for intersection control.Simulations are conducted for different total demand values and demand ratios to understand the effects of changing the minimum green time at the signal and the penetration rate of connected cars. Using autonomous vehicle control systems, the signal could rapidly change the direction of priority without relying on the reaction of drivers. However, without this technology a minimum green time is necessary. The results of the simulations show that a minimum green time increases the delay only for the low and balanced demand scenarios. Therefore, the value of using cars with autonomous vehicle control can only be seen at intersections with this kind of demand patterns, and could result in up to 7% decrease in delay. On the other hand, using information from connected vehicles to better adapt the traffic signal has proven to be indeed very valuable. Increases in the penetration rate from 0% up to 60% can significantly reduce the average delay (in low demand scenarios a decrease in delay of up to 60% can be observed). That being said, after a penetration rate of 60%, while the delays continue to decrease, the rate of reduction decreases and the marginal value of information from communication technologies diminishes. Overall, it is observed that connected vehicle technology could significantly improve the operation of traffic at signalized intersections, at least under the proposed algorithm.  相似文献   

7.
Connected vehicle technology can be beneficial for traffic operations at intersections. The information provided by cars equipped with this technology can be used to design a more efficient signal control strategy. Moreover, it can be possible to control the trajectory of automated vehicles with a centralized controller. This paper builds on a previous signal control algorithm developed for connected vehicles in a simple, single intersection. It improves the previous work by (1) integrating three different stages of technology development; (2) developing a heuristics to switch the signal controls depending on the stage of technology; (3) increasing the computational efficiency with a branch and bound solution method; (4) incorporating trajectory design for automated vehicles; (5) using a Kalman filter to reduce the impact of measurement errors on the final solution. Three categories of vehicles are considered in this paper to represent different stages of this technology: conventional vehicles, connected but non-automated vehicles (connected vehicles), and automated vehicles. The proposed algorithm finds the optimal departure sequence to minimize the total delay based on position information. Within each departure sequence, the algorithm finds the optimal trajectory of automated vehicles that reduces total delay. The optimal departure sequence and trajectories are obtained by a branch and bound method, which shows the potential of generalizing this algorithm to a complex intersection.Simulations are conducted for different total flows, demand ratios and penetration rates of each technology stage (i.e. proportion of each category of vehicles). This algorithm is compared to an actuated signal control algorithm to evaluate its performance. The simulation results show an evident decrease in the total number of stops and delay when using the connected vehicle algorithm for the tested scenarios with information level of as low as 50%. Robustness of this algorithm to different input parameters and measurement noises are also evaluated. Results show that the algorithm is more sensitive to the arrival pattern in high flow scenarios. Results also show that the algorithm works well with the measurement noises. Finally, the results are used to develop a heuristic to switch between the different control algorithms, according to the total demand and penetration rate of each technology.  相似文献   

8.
Technological advances are bringing connected and autonomous vehicles (CAVs) to the ever-evolving transportation system. Anticipating public acceptance and adoption of these technologies is important. A recent internet-based survey polled 347 Austinites to understand their opinions on smart-car technologies and strategies. Results indicate that respondents perceive fewer crashes to be the primary benefit of autonomous vehicles (AVs), with equipment failure being their top concern. Their average willingness to pay (WTP) for adding full (Level 4) automation ($7253) appears to be much higher than that for adding partial (Level 3) automation ($3300) to their current vehicles.Ordered probit and other model specifications estimate the impact of demographics, built-environment variables, and travel characteristics on Austinites’ WTP for adding various automation technologies and connectivity to their current and coming vehicles. It also estimates adoption rates of shared autonomous vehicles (SAVs) under different pricing scenarios ($1, $2, and $3 per mile), choice dependence on friends’ and neighbors’ adoption rates, and home-location decisions after AVs and SAVs become a common mode of transport. Higher-income, technology-savvy males, who live in urban areas, and those who have experienced more crashes have a greater interest in and higher WTP for the new technologies, with less dependence on others’ adoption rates. Such behavioral models are useful to simulate long-term adoption of CAV technologies under different vehicle pricing and demographic scenarios. These results can be used to develop smarter transportation systems for more efficient and sustainable travel.  相似文献   

9.
In this paper, we present results regarding the experimental validation of connected automated vehicle design. In order for a connected automated vehicle to integrate well with human-dominated traffic, we propose a class of connected cruise control algorithms with feedback structure originated from human driving behavior. We test the connected cruise controllers using real vehicles under several driving scenarios while utilizing beyond-line-of-sight motion information obtained from neighboring human-driven vehicles via vehicle-to-everything (V2X) communication. We experimentally show that the design is robust against variations in human behavior as well as changes in the topology of the communication network. We demonstrate that both safety and energy efficiency can be significantly improved for the connected automated vehicle as well as for the neighboring human-driven vehicles and that the connected automated vehicle may bring additional societal benefits by mitigating traffic waves.  相似文献   

10.
Connected and automated vehicles (CAV) are marketed for their increased safety, driving comfort, and time saving potential. With much easier access to information, increased processing power, and precision control, they also offer unprecedented opportunities for energy efficient driving. This paper is an attempt to highlight the energy saving potential of connected and automated vehicles based on first principles of motion, optimal control theory, and a review of the vast but scattered eco-driving literature. We explain that connectivity to other vehicles and infrastructure allows better anticipation of upcoming events, such as hills, curves, slow traffic, state of traffic signals, and movement of neighboring vehicles. Automation allows vehicles to adjust their motion more precisely in anticipation of upcoming events, and save energy. Opportunities for cooperative driving could further increase energy efficiency of a group of vehicles by allowing them to move in a coordinated manner. Energy efficient motion of connected and automated vehicles could have a harmonizing effect on mixed traffic, leading to additional energy savings for neighboring vehicles.  相似文献   

11.
The advancements in communication and sensing technologies can be exploited to assist the drivers in making better decisions. In this paper, we consider the design of a real-time cooperative eco-driving strategy for a group of vehicles with mixed automated vehicles (AVs) and human-driven vehicles (HVs). The lead vehicles in the platoon can receive the signal phase and timing information via vehicle-to-infrastructure (V2I) communication and the traffic states of both the preceding vehicle and current platoon via vehicle-to-vehicle (V2V) communication. We propose a receding horizon model predictive control (MPC) method to minimise the fuel consumption for platoons and drive the platoons to pass the intersection on a green phase. The method is then extended to dynamic platoon splitting and merging rules for cooperation among AVs and HVs in response to the high variation in urban traffic flow. Extensive simulation tests are also conducted to demonstrate the performance of the model in various conditions in the mixed traffic flow and different penetration rates of AVs. Our model shows that the cooperation between AVs and HVs can further smooth out the trajectory of the latter and reduce the fuel consumption of the entire traffic system, especially for the low penetration of AVs. It is noteworthy that the proposed model does not compromise the traffic efficiency and the driving comfort while achieving the eco-driving strategy.  相似文献   

12.
Connected and automated vehicle technologies hold great promises for improving the safety, efficiency, and environmental impacts of the transportation sector. In this study we are concerned with multihop connectivity of instantaneous vehicular one-dimensional ad hoc networks (VANETs) formed by connected vehicles along a communication path in a road network with given either vehicle locations or traffic densities, market penetration rates, and transmission ranges. We first define a new random variable for the location of the end node of a communication chain, which is a discrete random variable with given vehicle locations and a mixed random variable with given traffic densities. Then recursive, iterative, or differential equation models of instantaneous multihop connectivity between two communication nodes are derived from the relationships between end node probability mass or density function and connectivity. Assuming a simple communication model, the new models are applicable for general distribution patterns of vehicles and communication nodes, including non-evenly placed vehicles and nonhomogeneous Poisson distributions of nodes. With given vehicle locations, the computational cost for this new model is linear to the number of vehicles; with given traffic densities, we derive a new closed-form connectivity model for homogeneous Poisson distributions of communication nodes and an approximate closed-form model when distribution patterns of communication nodes are given by spatial renewal processes. We then apply the models to evaluate impacts on connectivity of traffic patterns, including shock waves, and road-side stations. The connectivity model could be helpful for designing routing protocols in VANETs and developing their applications in transportation systems.  相似文献   

13.
This research proposed an eco-driving system for an isolated signalized intersection under partially Connected and Automated Vehicles (CAV) environment. This system prioritizes mobility before improving fuel efficiency and optimizes the entire traffic flow by optimizing speed profiles of the connected and automated vehicles. The optimal control problem was solved using Pontryagin’s Minimum Principle. Simulation-based before and after evaluation of the proposed design was conducted. Fuel consumption benefits range from 2.02% to 58.01%. The CO2 emissions benefits range from 1.97% to 33.26%. Throughput benefits are up to 10.80%. The variations are caused by the market penetration rate of connected and automated vehicles and v/c ratio. No adverse effect is observed. Detailed investigation reveals that benefits are significant as long as there is CAV and they grow with CAV’s market penetration rate (MPR) until they level off at about 40% MPR. This indicates that the proposed eco-driving system can be implemented with a low market penetration rate of connected and automated vehicles and could be implemented in a near future. The investigation also reveals that the proposed eco-driving system is able to smooth out the shock wave caused by signal controls and is robust over the impedance from conventional vehicles and randomness of traffic. The proposed system is fast in computation and has great potential for real-time implementation.  相似文献   

14.
Real-time estimation of the traffic state in urban signalized links is valuable information for modern traffic control and management. In recent years, with the development of in-vehicle and communication technologies, connected vehicle data has been increasingly used in literature and practice. In this work, a novel data fusion approach is proposed for the high-resolution (second-by-second) estimation of queue length, vehicle accumulation, and outflow in urban signalized links. Required data includes input flow from a fixed detector at the upstream end of the link as well as location and speed of the connected vehicles. A probability-based approach is derived to compensate the error associated with low penetration rates while estimating the queue tail location, which renders the proposed methodology more robust to varying penetration rates of connected vehicles. A well-defined nonlinear function based on traffic flow theory is developed to attain the number of vehicles inside the queue based on queue tail location and average speed of connected vehicles. The overall scheme is thoroughly tested and demonstrated in a realistic microscopic simulation environment for three types of links with different penetration rates of connected vehicles. In order to test the efficiency of the proposed methodology in case that data are available at higher sampling times, the estimation procedure is also demonstrated for different time resolutions. The results demonstrate the efficiency and accuracy of the approach for high-resolution estimation, even in the presence of measurement noise.  相似文献   

15.
Recent developments of information and communication technologies (ICT) have enabled vehicles to timely communicate with each other through wireless technologies, which will form future (intelligent) traffic systems (ITS) consisting of so-called connected vehicles. Cooperative driving with the connected vehicles is regarded as a promising driving pattern to significantly improve transportation efficiency and traffic safety. Nevertheless, unreliable vehicular communications also introduce packet loss and transmission delay when vehicular kinetic information or control commands are disseminated among vehicles, which brings more challenges in the system modeling and optimization. Currently, no data has been yet available for the calibration and validation of a model for ITS, and most research has been only conducted for a theoretical point of view. Along this line, this paper focuses on the (theoretical) development of a more general (microscopic) traffic model which enables the cooperative driving behavior via a so-called inter-vehicle communication (IVC). To this end, we design a consensus-based controller for the cooperative driving system (CDS) considering (intelligent) traffic flow that consists of many platoons moving together. More specifically, the IEEE 802.11p, the de facto vehicular networking standard required to support ITS applications, is selected as the IVC protocols of the CDS, in order to investigate how the vehicular communications affect the features of intelligent traffic flow. This study essentially explores the relationship between IVC and cooperative driving, which can be exploited as the reference for the CDS optimization and design.  相似文献   

16.
Autonomous vehicles have the potential to improve link and intersection traffic behavior. Computer reaction times may admit reduced following headways and increase capacity and backwards wave speed. The degree of these improvements will depend on the proportion of autonomous vehicles in the network. To model arbitrary shared road scenarios, we develop a multiclass cell transmission model that admits variations in capacity and backwards wave speed in response to class proportions within each cell. The multiclass cell transmission model is shown to be consistent with the hydrodynamic theory. This paper then develops a car following model incorporating driver reaction time to predict capacity and backwards wave speed for multiclass scenarios. For intersection modeling, we adapt the legacy early method for intelligent traffic management (Bento et al., 2013) to general simulation-based dynamic traffic assignment models. Empirical results on a city network show that intersection controls are a major bottleneck in the model, and that the legacy early method improves over traffic signals when the autonomous vehicle proportion is sufficiently high.  相似文献   

17.
Reservation-based intersection control is a revolutionary idea for using connected autonomous vehicle technologies to improve intersection controls. Vehicles individually request permission to follow precise paths through the intersection at specific times from an intersection manager agent. Previous studies have shown that reservations can reduce delays beyond optimized signals in many demand scenarios. The purpose of this paper is to demonstrate that signals can outperform reservations through theoretical and realistic examples. We present two examples that exploit the reservation protocol to prioritize vehicles on local roads over vehicles on arterials, increasing the total vehicle delay. A third theoretical example demonstrates that reservations can encourage selfish route choice leading to arbitrarily large queues. Next, we present two realistic networks taken from metropolitan planning organization data in which reservations perform worse than signals. We conclude with significantly positive results from comparing reservations and signals on the downtown Austin grid network using dynamic traffic assignment. Overall, these results indicate that network-based analyses are needed to detect adverse route choices before traffic signals can be replaced with reservation controls. In asymmetric intersections (e.g. local road-arterial intersections), reservation controls can cause several potential issues. However, in networks with more symmetric intersections such as a downtown grid, reservations have great potential to improve traffic.  相似文献   

18.
Research on connected vehicle environment has been growing rapidly to investigate the effects of real-time exchange of kinetic information between vehicles and road condition information from the infrastructure through radio communication technologies. A fully connected vehicle environment can substantially reduce the latency in response caused by human perception-reaction time with the prospect of improving both safety and comfort. This study presents a dynamical model of route choice under a connected vehicle environment. We analyze the stability of headways by perturbing various factors in the microscopic traffic flow model and traffic flow dynamics in the car-following model and dynamical model of route choice. The advantage of this approach is that it complements the macroscopic traffic assignment model of route choice with microscopic elements that represent the important features of connected vehicles. The gaps between cars can be decreased and stabilized even in the presence of perturbations caused by incidents. The reduction in gaps will be helpful to optimize the traffic flow dynamics more easily with safe and stable conditions. The results show that the dynamics under the connected vehicle environment have equilibria. The approach presented in this study will be helpful to identify the important properties of a connected vehicle environment and to evaluate its benefits.  相似文献   

19.
In traffic flow with naturalistic driving only, stimulus information pre-dominantly comes from the preceding vehicles with drivers occasionally responding to the following vehicles through the inspection of rear-view mirrors. Such one-sided information propagation may potentially be altered in future connected vehicle environment. This brings new motivations of modeling vehicle dynamics under bi-directional information propagation. In this study, stemming from microscopic bi-directional car-following models, a continuum traffic flow model is put forward that incorporates the bi-directional information impact macroscopically but can still preserve the anisotropic characteristics of traffic flow and avoid non-physical phenomenon such as wrong-way travels. We then analyze the properties of the continuum model and respectively illustrate the condition that guarantees the anisotropy, eradicates the negative travel speed, preserves the traveling waves and keeps the linear stability. Through a series of numerical experiments, it is concluded that (1) under the bi-directional looking context only when the backward weight ratio belongs to an appropriate range then the anisotropic property can be maintained; (2) forward-propagating traffic density waves and standing waves emerge with the increasing consideration ratio for backward information; (3) the more aggressive driving behaviors for the forward direction can delay the backward-propagating and speed up the forward-propagating of traffic density waves; (4) positive holding effect and negative pushing effect of backward looking can also be observed under different backward weight ratios; and (5) traffic flow stability varies with different proportion of backward traffic information contribution and such stability impact is sensitive to the initial traffic density condition. This proposed continuum model may contribute to future development of traffic control and coordination in future connected vehicle environment.  相似文献   

20.
Motivated by the advancement in connected and autonomous vehicle technologies, this paper develops a novel car-following control scheme for a platoon of connected and autonomous vehicles on a straight highway. The platoon is modeled as an interconnected multi-agent dynamical system subject to physical and safety constraints, and it uses the global information structure such that each vehicle shares information with all the other vehicles. A constrained optimization based control scheme is proposed to ensure an entire platoon’s transient traffic smoothness and asymptotic dynamic performance. By exploiting the solution properties of the underlying optimization problem and using primal-dual formulation, this paper develops dual based distributed algorithms to compute optimal solutions with proven convergence. Furthermore, the asymptotic stability of the unconstrained linear closed-loop system is established. These stability analysis results provide a principle to select penalty weights in the underlying optimization problem to achieve the desired closed-loop performance for both the transient and the asymptotic dynamics. Extensive numerical simulations are conducted to validate the efficiency of the proposed algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号