首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
为提高新疆单线铁路土堤式挡风墙的防风效果,防止列车倾覆,提出只改变挡风墙的迎风侧坡角而背风侧坡角不变(方案1),以及挡风墙的迎风侧坡角和背风侧坡角相等且同步改变(方案2)的2种优化方案。采用数值模拟计算方法对比这2种优化方案对列车气动力系数的影响。结果表明:在列车处于静止状态下,方案1中挡风墙迎风侧最佳坡角为57°,方案2中挡风墙迎风侧和背风侧最佳坡角均为69°;在列车以20~120km.h-1速度运行的动态状态下,按方案1,为达到列车倾覆力矩为0的最佳防风效果,挡风墙迎风侧坡角也必须随着列车运行速度的增大而增大;而按方案2,挡风墙的迎风侧和背风侧坡角基本不随列车速度的变化而变化。因此建议在实际工程中采用方案2进行土堤式挡风墙坡脚的优化设计。  相似文献   

2.
针对接触网检修作业车自轮运转特种设备在大风天气下运行及作业安全标准研究的缺乏,采用三维、不可压N-S方程和k-ε双方程湍流模型,计算不同防风设施、不同路况和不同环境风风速风向条件对接触网作业车气动性能的影响规律。研究结果表明:有挡风墙下,侧滑角较小时,随着路堤高度的增加,车辆倾覆力矩增大;侧滑角较大时,随着路堤高度的增加,车辆倾覆力矩减小;其拐点在45°~60°左右,具体数值与挡风墙类型有关。无挡风墙下,当侧滑角β≤60°时,车辆气动倾覆力矩随着路堤高度的增高而增大;当侧滑角β60°时,车辆气动倾覆力矩随路堤高度的增高变化不大。接触网作业车工作平台升起、在-120°~120°转动时,30°左右时整车的倾覆力矩最大,-90°左右时最小。  相似文献   

3.
在风洞试验室建立2种大气紊流场,并以某钢桁梁和1列高速列车为例建立1∶29.7的车桥节段模型,进行横向紊流风作用下桁架梁上列车气动特性的试验。采用同步测压法得到静止列车上的气动力分布,研究列车在不同位置、不同风攻角以及不同紊流场下的侧向力系数和气动导纳函数。结果表明:两车交汇时位于迎风侧列车的侧向力系数最大,列车单车位于背风侧时的侧向力系数相对最小,在-3°风攻角时的列车侧向力系数比+3°风攻角时大,紊流场对列车的侧向力系数有一定的影响,高紊流场中的列车侧向力系数相对更大;列车位于迎风侧(单车迎风侧和双车迎风侧)时,其侧向力气动导纳相对较小,而升力气动导纳相对较大;当折减频率小于0.1时,列车侧向力气动导纳在+3°风攻角时最大,升力气动导纳在-3°风攻角时最大;紊流积分尺度越大,列车气动导纳相对越大。在对试验影响因素总结的基础上,提出列车侧向力和升力的气动导纳函数拟合公式。  相似文献   

4.
本文以某钢桁梁斜拉桥为原型,采用数值模拟方法研究一种叶片式导风屏障对横风环境下列车周围流场、列车气动性能、桥梁气动性能的影响.结果表明:(1)叶片式导风屏障改变了桥梁内部的风场环境,减小了列车周围风速,风速最少减小20%;(2)高度为3 m时,列车周围的风速最低,列车三分力系数最优;(3)透风率为20%~25%时,列车...  相似文献   

5.
兰新高速铁路通过风区长度约540 km。为保证强横向风下列车运行的安全,桥梁上需设置挡风结构。本文通过风洞数值模拟,对设置挡风结构后的桥梁及列车,开展二维模型及三维动车模型CFD(Computational Fluid Dynamics)计算,研究挡风结构设置形式、高度、开孔率对列车气动参数的影响规律。依据研究结果建议桥梁挡风结构最佳高度为4 m,开孔率为20%。  相似文献   

6.
研究目的:高速列车通过铁路挡风墙及在墙内交会时,挡风墙和列车的耦合空气动力响应会影响列车的运行安全与舒适性。本文基于高速列车气动性能动模型试验,对列车单车、交会通过挡风墙时的耦合空气动力响应进行测试与分析,以期得出挡风墙模型表面和列车车体表面压力波值及其变化传播规律。研究结论:(1)单车运行时,挡风墙内、外侧测点压力波最大值、最小值和幅值随测点水平位置变化不大;而交会运行时,挡风墙内、外侧测点压力波最大值、最小值和幅值的绝对值在挡风墙中间交会处最大;(2)就挡风墙内、外侧表面压力变化而言,外侧测点压力波幅值远小于对称的内侧测点,对内、外侧测点,其压力变化幅值近似与列车车速的平方呈正比关系;(3)挡风墙内侧测点压力值随高度增加而减小,外侧测点压力值随高度增大而增加,建议挡风墙结构设计计算时主要考虑其内侧测点压力变化影响;(4)本研究结论可为高速铁路列车安全及防风工程的计算和设计提供基础。  相似文献   

7.
为了掌握戈壁地区铁路沿线各种既有挡风墙的功效与不足之处,基于流体数值分析方法,对高度为3.0 m的不同形式挡风墙背风侧在不同风速条件下的流场进行了模拟计算分析。得到了不同形式挡风墙背风侧的流场特点、风向和风速变化规律:对拉式挡风墙背风侧的涡流特征显著,其大风遮蔽效应系数呈现出先降后升的规律性变化;而土堤式挡风墙背风侧不仅不存在涡流区,且大风途经土堤式挡墙后流场运动要素变化较小。计算数据显示,对拉式挡风墙的挡风效果优于土堤式;挡风墙高度为3.0 m时,对拉式挡风墙能够满足要求,而土堤式挡风墙则不能满足要求,需要加以改进。以上研究结论为铁路的安全运行与防风沙设计提供参考与依据。  相似文献   

8.
采用计算流体力学软件建立桥梁单体、车辆单体以及车桥组合体模型,湍流模型取标准κ-ε模型,计算各模型在不同风攻角时侧向风作用下的气动力系数.考虑风屏障对车辆、桥梁气动性能影响,建立风屏障、桥梁与车辆组合体模型,分析风屏障不同开孔率时车辆、桥梁气动力系数变化规律.结果表明:车辆位于桥上时,桥梁阻力和车辆侧力会增大;桥上车辆侧滚力矩系数明显大于车辆单独存在的情况,且车辆位于桥上迎风侧大于背风侧的情况;安装风屏障后,桥梁阻力和力矩系数随开孔率增大而降低,车辆侧力系数和力矩系数随开孔率增大而增大;为保证风屏障有效性,风屏障开孔率应小于40%.  相似文献   

9.
随着兰新线上通过列车速度的提高,现有土堤式防风墙的防护效果亟需改善,考虑在原有挡风墙顶部进行局部加高改造。基于三维定常、不可压N-S方程与κ-ε双方程湍流模型,采用棚车为代表车型,在横风风速为50 m/s时,分别对不同加高高度的对称和非对称土堤式挡风墙条件下运行速度为120 km/h的货物列车所受气动力进行了数值模拟,以车辆倾覆力矩为考核指标分析挡风墙加高高度对棚车气动性能的影响。研究结果表明,在现有土堤式挡风墙顶部局部加高能有效地提高其对列车的防风作用;其对称土堤式挡风墙合理加高高度为0.28 m,迎风侧高度1 m和2 m的非对称土堤式挡风墙合理加高高度分别为0.62和0.49 m。结果为工程实际应用提供了理论依据。  相似文献   

10.
为探明横风作用下车体侧滚对列车气动性能和运行稳定性的影响,采用三维、定常、不可压缩雷诺时均方程和k-ε双方程湍流模型,对CRH5G动车组进行仿真计算。研究结果表明:当侧滚角从0°增加到2.5°时,车底部迎风侧负压减小,绝对值最大相差532 Pa,车顶迎风侧负压增大,绝对值最大相差579 Pa,车底压力变化的区域更大,车顶和车底背风侧的压力变化都不大;头车后部车底负压减小,绝对值最大相差470 Pa;气动力方面,列车升力增大,头车升力变化最为明显,从0.15 k N增加到16.6 k N;头车的点头力矩提升了20%,尾车的点头力矩下降了7%;进一步的车辆动力学仿真计算结果表明:车体侧滚引起的气动载荷变化对列车脱轨系数、倾覆系数的影响很小。因而在研究横风作用下的列车运行稳定性时,一般可不考虑车体侧滚对气动性能的影响。  相似文献   

11.
车桥系统气动特性的节段模型风洞试验研究   总被引:3,自引:1,他引:2  
侧向风作用下的车桥耦合振动分析需要考虑相互气动影响的车辆和桥梁各自的气动参数。为考虑车辆和桥梁的相互气动影响,在常规桥梁节段模型三分力测试装置的基础上研制了一种三分力分离装置———交叉滑槽系统。该系统利用环形滑槽和直线滑槽交叉点位置的变化来调整车辆和桥梁间的相对几何关系,并能实现车桥系统的同轴转动,从而方便地进行不同攻角情况下气动力的测试。利用交叉滑槽系统通过节段模型风洞试验对车桥系统的气动特性进行了多工况对比研究,讨论了车桥系统的雷诺数效应,分析了车桥间的相互气动作用,比较了车辆在桥上位置的影响。试验结果表明,基于交叉滑槽系统的节段模型风洞试验测试是可行的;车桥间的相互气动作用对车辆和桥梁的气动力有较明显的影响。  相似文献   

12.
大风环境下YW25G型客车横向振动偏移量研究   总被引:1,自引:0,他引:1  
采用基于机器视觉的车辆动态偏移量检测方法,对YW25G型客车在大风环境下停留和运行时的横向振动偏移量进行了实车测试试验,提出了气动力作用下振动偏移量系数的概念,分析了列车在各种挡风墙后和无挡风墙区段停留时的横向振动偏移量系数,结果表明:得到YW25G型客车在风区停留时的最大横向振动偏移量为67 mm,在风区和非风区运行时的最大横向振动偏移量分别为141 mm和86 mm;无挡风墙时,YW25G型客车的气动力作用下的横向振动偏移量系数最大;在砼枕直插式和砼枕式挡风墙后时,该系数最小;在土堤式挡风墙后的相应系数最大;分别在加筋对拉式、加筋对拉加高式、桥式挡风墙后时,该系数则由小变大.  相似文献   

13.
为研究不同风向角下高速铁路列车气动力特性,分析流线型列车周围流场结构差异对列车气动力影响,以高速铁路典型CRH2列车为研究背景,采用风洞试验和数值模拟相结合的研究手段对不同工况下列车气动力和流场结构进行分析.研究结果表明:测压和测力试验结果具有很好的一致性,数值模拟与风洞试验结果吻合良好,可用来分析风向角对列车气动特性...  相似文献   

14.
为了研究非定常气动力荷载对桥上列车行车安全性和舒适性的影响,结合有限元软件ANSYS和多体动力学软件SIMPACK,建立列车-轨道-桥梁三维多体系统模型,计算风-列车-桥梁耦合系统的动力响应;对比分析定常与非定常气动力荷载作用下桥上列车的行驶安全与舒适性,研究非定常气动力荷载作用下不同横向风速对列车行驶安全的影响。研究结果表明:列车行驶速度为200~300km/h,无风荷载情况下,各安全性与舒适性指标值均满足要求且均小于风荷载作用。横风作用下平均风速为20 m/s,考虑非定常气动力荷载的影响不仅会使列车行驶安全评估结果更安全,还会使列车舒适性评估结果偏于保守。平均风速不超过20 m/s,车速控制在250 km/h,桥上列车行车安全、舒适性均满足要求,且平稳性等级可达到"良好"以上。通过对不同横向风速下桥上列车行驶安全分析,给出桥上列车安全行驶的阈值,为列车的安全运营提供依据。  相似文献   

15.
强横风下青藏线棚车气动性能研究   总被引:5,自引:2,他引:3  
采用非结构网格,对强横风下青藏线桥梁上运行的棚车气动性能进行数值模拟,并对部分数值模拟的结果进行风洞实验验证。计算结果表明:实验结果和数值模拟的结果较吻合;在指数风条件下,棚车的气动力随桥梁高度和横风速度的增加而迅速增加;而列车的减速运行,将使棚车所受到的气动力和倾覆力矩降低,有助于棚车安全通过风区桥梁。  相似文献   

16.
横风作用下的风—车—桥耦合系统的振动分析需要准确识别车辆和桥梁气动参数。基于CFD数值仿真平台分别建立了桥梁单体模型和车桥耦合体系模型,计算分析了高低紊流度风场中不同风攻角下车辆和桥梁的静气动力,分析研究了静止车辆对桥梁静气动力的影响、风攻角对车辆静气动力的影响以及风场的紊流性对车桥静气动力的影响。计算结果表明:由于车辆的干扰,不同风攻角下的桥梁静气动力普遍增大;风攻角对车辆静气动力系数影响比较大;紊流特性对车辆静气动力系数有一定影响,对桥梁静气动力系数影响不大。  相似文献   

17.
将空气流场视为黏性、可压缩的非定常流,对高速列车和跨线桥梁模型进行适当简化,以沪昆线上某(112+80+32)m预应力混凝土独塔斜拉桥为例,基于大型计算流体力学软件Fluent,采用滑移网格法建立高速列车和跨线斜拉桥流场计算模型。分析了列车以350km/h速度从斜交跨线斜拉桥下穿过时,桥梁底面压强分布情况。通过积分换算出列车气动效应对桥梁产生升力、阻力和扭矩时程。将该气动力时程施加至斜拉桥空间动力模型,研究运营阶段斜拉桥动力响应。研究表明,高速列车尾流对斜拉桥的气动力作用大于列车头,列车正上方梁体所受气动力最大;列车风对运营阶段斜拉桥影响极小,可忽略不计;若跨线桥为质量惯性较小的钢桥,列车气动力对其影响仍需进行相应研究。  相似文献   

18.
在风-车-桥耦舍系统中,不同交通状态车辆将引起桥梁气动力和局部风压的变化。采用测压法测试了不同车流下桥梁断面三分力系数随攻角的变化情况,研究了不同车流下车辆对三分力系数以及局部风压的影响。研究结果表明:在堵车情况下车辆对桥梁断面三分力影响最大,车辆引起桥梁阻力系数和升力矩系数显著减小,使升力系数增大。在车桥耦舍风场作用下,桥梁顶面迎风侧压力值产生由正到负的剧烈幅值变化。  相似文献   

19.
为研究跨铁路站场的带高防护结构边箱叠合梁斜拉桥的涡振性能及抑振措施,开展1:50节段模型涡激振动风洞试验研究。试验分析风攻角(+3°,0°和-3°)以及防护结构对主梁涡振性能的影响。在此基础上,综合测试水平稳定板、梁底稳定板、风嘴、改变防护结构透风率等气动措施对桥梁涡振性能的提升效果。试验结果表明:带高防护结构的边箱叠合梁涡振性能较差,3个风攻角工况均出现了大幅竖向涡激振动;防护结构以及断面本身较钝的外形造成了主梁的气动不稳定,考虑到其本身较明显的钝体效应,建议在断面两侧安装风嘴;采用风嘴+两道梁底稳定板的方式能显著提高主梁涡振性能;在安装风嘴的基础上,增大防护结构下部实心段的透风率能够较好的控制主梁涡激振动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号