首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
为探讨干法制备废轮胎热解炭黑改性沥青混合料的工艺参数,以《沥青混合料改性添加剂第7部分:废旧轮胎热解炭黑》(JT/T 860.7-2017)推荐的湿法制备的废轮胎热解炭黑改性沥青混合料体积参数空隙率为优化目标,设定热解炭黑掺量、干拌时间、湿拌时间、矿料加热温度、混合料拌和温度和沥青加热温度等6个因素,各因素设定3个水平,进行了L27(36)正交试验,得出干法废轮胎热解炭黑改性沥青混合料最佳制备工艺参数。按照最佳工艺参数制备废轮胎热解炭黑改性沥青混合料,并对混合料进行了路用性能试验。研究结果表明:干法热解炭黑改性沥青混合料室内拌和的最佳参数为热解炭黑掺量10%、干拌时间15 s、湿拌时间90 s、沥青加热温度155℃、矿料加热温度190℃、混合料拌和温度170℃。干法废轮胎热解炭黑改性沥青混合料的动稳定度值比70号A级沥青混合料提高了83%;其他路用性能指标均满足规范技术要求。研究干法制备工艺参数对废轮胎热解炭黑改性沥青混合料应用提供了一种新工艺。  相似文献   

2.
温拌沥青混合料压实特性试验研究   总被引:1,自引:0,他引:1  
通过马歇尔击实试验和旋转压实试验,研究不同压实方式对温拌沥青混合料压实特性的影响.以AC-13F为例,分析了成型方式和压实次数对温拌沥青混合料体积参数的影响,并采用热拌沥青混合料进行对比.结果表明:采用旋转压实法成型的试件密度大于击实法;在压实次数为50次时,试件体积参数对成型方法和沥青混合料类型均不敏感等,为温拌沥青混合料的设计和施工提供了对比参数.  相似文献   

3.
为了研究Superpave高性能改性沥青混合料的施工工艺,结合某一铺筑Superpave高性能改性沥青路面的路段,介绍在现有设备、技术条件下铺筑高性能改性沥青路面的施工技术,这些技术主要包括改性沥青生产工艺、沥青混合料的拌和、运输、摊铺和碾压工艺以及质量检测技术,可以提高沥青路面的使用性能与耐久性,为工程工作人员提供帮助和指导,具有重要的现实意义。  相似文献   

4.
再生沥青混合料最佳拌和温度及压实温度研究   总被引:1,自引:0,他引:1  
为了确定再生沥青混合料的最佳拌和温度和压实温度,首先通过SGC试验在不同温度下成型混合料试件,根据试件的体积参数确定再生混合料最佳压实温度,然后根据再生沥青在合适剪切速率下的黏温曲线确定再生沥青混合料的最佳拌和温度。试验结果证明:对于再生基质沥青混合料,试验确定的最佳压实温度及拌和温度接近由黏温曲线计算所得温度值;对于再生改性沥青混合料,其施工特性与新拌混合料有明显差异,由试验确定的最佳压实温度及拌和温度低于黏温曲线所得的温度,建议实际工程中确定再生改性沥青混合料压实温度及拌和温度时,可在再生沥青黏温曲线试验的基础上适当降低5~10℃。  相似文献   

5.
尽管针对布敦岩沥青改性沥青及其混合料性能的研究已有很多,但鲜见对布敦岩沥青混合料拌和工艺的研究。论文选取70号基质沥青和SBS改性沥青以及两种级配类型(SMA-13和AC-20),基于拌和楼"干拌"工艺,通过改变拌和顺序、拌和时间,研究拌和楼拌和工艺对布敦岩沥青混合料性能的影响。结果发现岩沥青后加工艺(集料与沥青先拌和,再与岩沥青拌和)优于常规工艺(集料与岩沥青先拌和,再与沥青拌和);适当延长拌和时间有助于降低空隙率,提高马歇尔稳定度,改善混合料性能;布敦岩沥青与SBS复合改性混合料的性能更优。据此,提出对布敦岩沥青混合料拌和工艺要求。  相似文献   

6.
为了能简单有效的确定温再生改性沥青混合料的压实温度,根据Superpave体积指标设计思想,提出采用试件的体积指标控制温再生混合料的拌和、压实温度。在最佳沥青用量的基础上,测定不同拌和、压实温度下试件的体积指标,根据设计空隙率确定压实温度,并进行温拌再生改性沥青混合料路用性能试验,结果表明掺加40%RAP温拌改性沥青混合料的设计空隙率为4%时,拌和温度可降低至155℃,压实成型温度可降低至140℃,在此拌和、压实温度条件下,温再生混合料的路用性能满足要求。  相似文献   

7.
高模量剂改性沥青混合料制备工艺对路面施工质量和路用性能有很大影响。该文首先通过车辙试验和方差分析法研究了集料温度和干拌时间对高模量剂改善混合料高温性能作用的影响,进而推荐了集料加热温度和干拌时间。然后应用自主开发的和易性仪器,测试了基质沥青混合料和高模量剂改性沥青混合料在不同温度下的扭矩值,根据等扭矩原则确定了高模量沥青混合料的拌和、压实温度范围。混合料压实效果检验结果表明:由以上方法确定高模量剂改性沥青混合料制备工艺是合理的。  相似文献   

8.
为确定温拌橡胶沥青排水路面混合料的成型温度,选择Sasobit、Evotherm为温拌剂,结合最佳空隙率法和粘温曲线法,在不同压实温度下分别成型Sasobit、Evotherm温拌橡胶沥青AR-OGFC13试件。通过目标空隙率确定2种沥青的压实温度区间,并推算温拌橡胶沥青排水路面胶结料对应拌和与压实粘度区间。结果表明:Sasobit、Evotherm温拌橡胶沥青拌和温度区间分别为144.4±3℃、149.3±3℃,压实温度区间分别为134.4±3℃、139.3±3℃,胶结料对应的拌和与压实粘度区间分别为1.3±0.3Pa·s、4.6±0.3Pa·s。通过验证,粘度区间适用于温拌橡胶沥青排水路面沥青混合料,且混合料具有良好的路用性能。  相似文献   

9.
为扩大水泥乳化沥青的使用,结合马歇尔击实试验,考虑混合料拌料顺序和击实次数2个工艺参数,对乳化沥青的成型工艺进行研究。最终确定水泥乳化沥青合理制备工艺为:将乳化沥青与粗、细集料先拌和均匀,再与水泥和矿粉进行拌和,采用双面击实50次,待延迟到水泥初凝时再双面击实25次,最后成型混合料试件。试验路段性能结果表明,按照该成型工艺施作路段的高温性能和抗水损害性能表现良好,路面压实度也满足规范要求。  相似文献   

10.
结合高等级公路沥青路面工程.讨论改性沥青与SMA路面的施工温度、混合料拌制、运输、摊铺和碾压成型的施工工艺,并提出提高路面平整度的努力方向。  相似文献   

11.
12.
主要探讨中外合资企业(以下简称合资企业)里能否存在自主品牌汽车,能否出新的自主品牌汽车。  相似文献   

13.
邓恒  章一舫  唐华  王鼎鼎 《上海汽车》2008,(1):20-23,27
根据整车技术环境发展方向,提出了汽车发电机的技术要求.结合这些要求,阐述了汽车发电机的各种特性与整车之间的设计匹配关系,以及各种技术使用的原因和背景,并针对使用中的故障给出处理策略.在整车设计阶段合理地利用车用交流发电机的特性,有利于提高轿车的舒适性.  相似文献   

14.
前照灯检测仪是在假定车身位置摆正的前提下进行检测的,实际检测中停车位置往往很难做到没有偏差.影响了检测精度。介绍了基于机器视觉技术的车身位置偏差自动补偿前照灯检测仪的实现方法和检测原理.详细地论述了斜拍校正技术、模式识别技术以及自然光线下高精度实时角度测量技术。  相似文献   

15.
针对某1.5T发动机在台架实验中出现的连杆螺栓断裂问题,通过断口分析得知螺栓断裂是由于夹紧力不足引起的。通过材料的力学特性曲线,详细论述了导致螺栓夹紧力不足的原因,并通过台架实验予以验证。文章最后对螺栓装配时的问题进行了总结。  相似文献   

16.
盐渍土地层隧道在运营期间底部结构产生的病害层出不穷,隧底的病害缺陷直接影响衬砌结构承载力。在全面调查新疆某隧道底部病害的基础上,运用ANSYS软件建立“荷载-结构”模型,改变隧底不同位置的衬砌厚度值,模拟衬砌厚度缺陷,分析典型截面安全系数的演变规律。结果表明:墙脚作为应力集中的部位,是隧道衬砌受力的最不利部位;隧底厚度缺陷值,围岩条件直接影响隧道衬砌结构的安全性能。拱顶安全系数随隧底厚度缺陷的增加而增大;左墙脚、右墙脚同时发生厚度缺陷时,拱顶安全系数上升最明显。  相似文献   

17.
利用计算流体力学( CFD)对涡轮增压器的压气机叶轮及蜗壳的组合性能进行了模拟计算,得到了其在各转速下的效率及压比特性曲线.将这些特性曲线值与实验值进行对比后,详细分析了两者之间所存在的偏差以及引起该偏差的可能原因.然后对压气机叶轮内部的流场进行了详细分析,指出了引起流道效率损失的原因及今后优化方向.在此基础上初步分析...  相似文献   

18.
龚刚 《客车技术》2020,(1):10-13
通过AVL-Cruise搭建了纯电动城市客车仿真计算模型,结合某车型相关参数,并根据其在中国典型城市公交循环工况下仿真结果[1],计算了电机和后桥主减速器的平均工作效率,分析了不同主减速器传动比对整车能耗的影响。  相似文献   

19.
以简化的直背式轿车模型为研究对象,以商用计算流体力学软件STAR-CD为工具,应用不同的湍流模型和离散格式对轿车外流场进行了数值模拟,通过与试验结果的对比,研究了湍流模型和离散格式对直背式轿车外流场数值计算精度的影响,同时对SIMPLE算法及其两种修正方法PISO和SIMPISO算法的计算精度进行了比较。结果表明,高雷诺数Spalart-Allmaras模型和QUICK格式最适合汽车外流场的计算,采用SIMPISO算法的计算精度最高。  相似文献   

20.
在大广南高速公路K161+400~K162+800段施工过程中,离公路约200m区域突然出现大面积地面沉陷和裂缝现象,该地面变形将影响到线位重新调整,通过调查与分析,对地面变形的安全状态进行了评价,为该公路的建设和运营提供了科学的决策依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号