首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
为探求一种钢-混凝土组合梁桥的弹性抗弯承载力计算方法,从弹性理论出发,通过对钢-混凝土组合梁自身构造特点和力学特性的分析与推导,总结、提炼现行行业标准和规范中计算方法的共性,选择满足各种规范要求的计算表达式;对相关参数进行定义,提出了一种简捷、实用的截面弹性抗弯承载力计算方法;给出了钢-混凝土组合梁简支梁桥和连续梁桥弹性抗弯承载力的2个计算示例,基于上述方法分别根据跨中正弯矩区段和中支点负弯矩区段的公式计算了其弹性抗弯承载力,并与其他规范中塑性抗弯承载力的计算结果进行了对比。结果表明:采用该公式计算钢-混凝土组合梁桥的截面弹性抗弯承载力的方法可行、结论可靠,能够用于公路桥梁的截面抗弯承载力计算;可以认为,同一组合梁的截面弹性抗弯承载力是截面承载能力的下限,而截面塑性抗弯承载力则是截面承载能力的上限。  相似文献   

2.
为研究钢-超高性能混凝土(Ultra-high Performance Concrete,UHPC)连续组合梁的抗弯承载能力,完成了2根大比例缩尺模型的静载试验,包括1根钢-UHPC连续组合梁和1根预应力钢-普通混凝土(Normal Strength Concrete,NC)连续组合梁,对其挠度、应力分布、裂缝发生发展模式及承载能力进行分析,并研究了钢-UHPC连续组合梁的弯矩重分布性能。同时,采用ABAQUS软件中的塑性损伤模型(CDP)进行数值模拟。结果表明:钢-UHPC连续组合梁UHPC板的名义开裂强度为普通组合梁预应力NC板的2.2倍,钢-UHPC连续组合梁的极限承载力约为普通组合梁的1.2倍;UHPC板开裂后裂缝密集、间距小,且以长度较小的微裂纹为主;UHPC板/NC板与钢梁均采用群钉连接,二者相对滑移较小,可有效形成整体共同工作;采用塑性理论计算钢-UHPC连续组合梁的抗弯承载能力,应考虑UHPC的抗拉强度,与现有组合结构规范公式相比,根据所提出方法计算得到的负弯矩区截面抗弯承载力与试验值吻合较好;考虑UHPC抗拉强度后,钢-UHPC连续组合梁负弯矩区塑性铰转动能力降低,弯矩调幅需求及有效弯矩重分布能力均明显下降。  相似文献   

3.
根据带波形钢腹板挑梁的钢-混凝土组合脊骨梁的小箱梁、大悬臂的结构特点,提出了考虑偏载效应影响的组合脊骨梁正应力计算公式;通过确定合理的抗弯极限状态,并基于简化塑性理论,推导出组合脊骨梁正、负弯矩截面的极限抗弯承载力计算公式和考虑混凝土翼板贡献的抗剪承载力计算公式;同时提出了波形钢腹板组合挑梁荷载横向分布计算的修正刚接梁法以及受载挑梁荷载横向分布系数随载位沿挑梁纵向变化而呈三次曲线分布的假设,并按照拟平截面假定,推导了波形钢腹板组合挑梁的开裂弯矩和弹性抗弯承载力计算公式。在此基础上进行了相应的模型试验研究,理论分析值和试验结果吻合良好,说明本文的设计公式精度满足要求,能够用于同类结构的设计计算。  相似文献   

4.
总结了钢混组合梁桥的结构特点和发展前景,并探讨了该结构体系存在的设计难题和要点。从构造、截面和体系三个层次,归纳了钢混组合梁桥的四个关键设计难题——钢混连接构造、负弯矩区开裂、负弯矩区底板屈曲和整体横向稳定,提出了设计对策和解决方法,推进钢混组合梁桥在我国的应用实践。  相似文献   

5.
为了对比普通预应力钢混组合梁桥与后结合预应力钢混组合梁桥的性能差异,采用数值模拟的方法,建立了钢混组合梁桥有限元模型。基于实际钢混组合梁桥的施工过程及使用条件,详细分析了钢混组合梁桥的受力情况,对比了两种预应力钢混组合梁桥的材料用量、钢主梁应力,以及负弯矩区混凝土桥面板应力。结果表明,相对于普通预应力钢混组合梁桥,采用后结合预应力技术,对钢混组合梁桥的负弯矩区混凝土板施加预应力,可以使施工更加方便,从而降低施工难度,并提高材料的利用率,减少材料用量。  相似文献   

6.
钢-混凝土组合梁桥因其发挥了2种材料各自的优势,被广泛应用于中小跨径的桥梁结构中,而极限承载能力是评判其安全与否最直观的指标之一。为了对现役钢-混凝土组合梁桥的极限承载力进行更为准确的评估,提出一种确定钢主梁极限承载能力可靠度的新方法,该方法能考虑车辆荷载引起的疲劳累积损伤对钢主梁极限承载力的影响。首先建立了三维车桥耦合振动模型,并采用美国AASHTO桥梁设计规范中的Ⅰ形简支钢-混凝土组合梁桥、强度设计车辆荷载模型和疲劳设计车辆荷载模型作为算例进行分析。然后,基于建立的车桥耦合振动程序、S-N曲线和雨流计数法,获得不同桥面状态下强度设计车以不同车速过桥时产生的动力冲击系数和疲劳设计车以不同车速过桥时产生的疲劳损伤累积和最大应力,并根据卡方检验对在不同桥面状态和不同车速下获得的这3个参数的分布类型进行检验。最后,基于剩余强度理论,利用AASHTO规范中规定的桥梁承载力设计方程,建立能考虑桥梁全寿命周期内桥面处于不同状态时车辆过桥产生的累积疲劳损伤对钢主梁极限承载能力折减的极限状态方程,并以此对钢主梁极限承载力的可靠指标进行研究,获得其与疲劳设计车日均通行量的关系。研究结果表明:桥梁极限承载力可靠度会随着疲劳设计车日通行量的增大而降低;钢主梁疲劳累积损伤对其极限承载力折减具有重要影响。提出的方法为准确评估在役桥梁的极限承载能力提供了更为有效的途径。  相似文献   

7.
依据现行钢-混组合桥梁设计规范,采用可靠度方法进行敏感性分析,得到影响钢-混组合梁桥抗弯承载力的敏感因素,并通过实例分析给出提高其抗弯可靠度的经济适用方法。结果表明:随着汽车荷载作用效应与恒荷载作用效应比ρE的增大,结构可靠度逐渐降低;在钢-混组合梁桥抗弯承载力影响因素中,腹板高度、桥面板宽度和底板厚度对可靠度影响最为显著;提高腹板高度比增加底板厚度更具工程经济价值。  相似文献   

8.
为提高组合梁负弯矩区桥面板抗裂性能,提高结构耐久性,提出一种钢-UHPC-NC组合梁结构形式,即在传统钢混组合梁的基础上,负弯矩区域采用薄层超高性能混凝土(UHPC)替代部分普通混凝土(NC).以主跨80 m钢混组合梁桥为背景,介绍了钢-UHPC-NC组合梁的构造特征,并借助有限元软件对该桥梁进行结构计算,重点分析了钢...  相似文献   

9.
推导了钢混组合梁桥基于弹性和基于弹塑性的承载能力设计计算方法,从而明确钢和混凝土在组合梁桥中的作用特性。总结了钢混组合梁桥相对于混凝土桥和钢桥的优势和难点,其中难点主要体现在负弯矩区开裂和整体倾覆稳定方面,并针对这两个难点,提出了设计解决方法和要点。  相似文献   

10.
《公路》2020,(4)
结合纤维模型法研究建立了哑铃形钢管混凝土拱桥拱肋截面受弯塑性发展系数和抗弯承载力计算公式。首先,通过合理遴选钢管和混凝土的本构关系,建立了哑铃形钢管混凝土构件抗弯承载力分析的纤维模型法,并利用试验数据验证了方法的准确性;进而,基于钢管混凝土统一理论,借助塑性发展系数表征截面在弯矩作用下的塑性发展能力,并利用纤维模型法分析了截面高度、钢管和混凝土强度、钢管壁厚和套箍系数对塑性发展系数的影响规律,最终选定套箍系数作为参数建立塑性发展系数表达式;最后,基于新建的塑性发展系数表达式建立了哑铃形钢管混凝土构件抗弯承载力计算公式,并将计算结果与试验结果进行对比。研究表明,建立的纤维模型法能够准确计算哑铃形钢管混凝土构件的抗弯承载力,塑性发展系数与套箍系数之间具有较强的非线性相关关系,所建立的抗弯承载力计算公式结果与试验结果吻合良好。  相似文献   

11.
为缩短城市高架桥现场作业时间,利用超高性能混凝土良好的力学性能及耐久性,提出一种可整体预制、整跨吊装、快速成桥的钢-UHPC轻型组合桥梁,并针对传统钢-混凝土组合连续梁桥负弯矩区桥面板拉应力过大的情况,提出一种可与梁段整体预制的简支变连续结构。对30m跨径钢-UHPC轻型组合城市桥梁试设计,并与现有方案进行材料用量及经济性能对比;利用MIDAS/Civil软件对试设计桥梁进行荷载组合效应计算,根据计算结果以中国桥梁设计规范为基础,同时借鉴法国UHPC结构设计规程,分别基于塑性设计法和弹性设计法对钢-UHPC轻型组合连续桥梁的承载能力极限状态和正常使用极限状态进行设计计算,并对正常使用极限状态钢筋数量及裂缝宽度的关系进一步探究;建立负弯矩区精细化的局部有限元模型,根据计算结果选择拉应力较大的桥梁纵向接缝进行1∶1足尺模型试验研究。研究结果表明:试设计桥梁在预估价较低的情况下结构高跨比由1/21降低至1/28,自重减至传统钢-混凝土组合桥梁的54%;钢筋数量增加初期,UHPC板裂缝宽度迅速减小,随着钢筋数量继续增大,其对裂缝宽度控制的贡献明显减小;试设计钢-UHPC轻型组合城市桥梁具有足够的抗弯与抗剪承载力,负弯矩区整体应力水平不高,同时试验接缝抗拉强度远大于计算值,满足工程使用要求。  相似文献   

12.
为研究钢-UHPC华夫板组合梁负弯矩区抗弯性能,考虑华夫板板肋高度比、纵筋配筋率以及采用抗拔不抗剪栓钉连接件对钢-UHPC华夫板组合梁的破坏模式、裂缝发展规律及承载能力的影响,采用跨中单点加载方式完成了4根钢-UHPC华夫板组合梁试件在负弯矩作用下的静力加载试验。基于简化塑性理论,并考虑将UHPC受拉区的拉应力分布等效为均匀应力分布,提出了负弯矩区钢-UHPC华夫板组合梁的极限抗弯承载力计算方法。研究结果表明:负弯矩作用下,4根钢-UHPC华夫板组合梁试件的破坏形态均为典型的弯曲破坏;极限状态下,华夫板内纵向受拉钢筋屈服,钢梁上翼缘受拉屈服,钢梁下翼缘受压发生局部屈曲,华夫板跨中主裂缝贯通,其余裂缝呈现密集分布且纤细的特点。保证华夫板总高度90 mm不变,板肋高度比由1∶1减小为1∶2会加剧华夫板的裂缝开展,使试件的开裂荷载和初始刚度略有降低,但承载能力基本不变。华夫板配筋率增大1.05%,试件的承载力与刚度分别提高18.4%与7.7%,并且有助于约束华夫板的裂缝宽度。采用抗拔不抗剪栓钉连接件可在一定程度上抑制试件在正常使用阶段时的裂缝开展,但会导致试件承载力、刚度和延性下降,下降幅度分别为6.9%、9.6%和19.7%。根据所提出的钢-UHPC华夫板组合梁负弯矩区极限抗弯承载力的理论计算公式所得的计算值略低于试验值,且相对误差在10%以内。  相似文献   

13.
中小跨径钢混组合梁在高等级公路上,已得到广泛的使用。钢混组合梁负弯矩区受力复杂,混凝土桥面板破损情况时有发生,影响桥梁正常使用。本文详述了中小跨径钢混组合梁负弯矩区的设计方法,并探讨支点位移法对改善混凝土桥面板受力的影响,为该类桥梁负弯矩区的设计提供参考。  相似文献   

14.
钢-混凝土组合桥梁承载力可靠度分析   总被引:4,自引:0,他引:4  
根据编制中国<钢-混凝土桥梁设计与施工细则>的需要,对钢-混凝土组合桥梁中组合梁的承载力进行了可靠度分析,其中承载力包括抗弯承载力、纵向抗剪承载力和竖向抗剪承载力.利用最大熵函数构造的凝聚函数,将分段表达的抗弯承栽力和纵向抗剪承载力集成为一个计算公式,进而计算了钢-混凝土组合梁抗力的统计参数.给出了材料分项系数γ5取1.1、1.15和1.2时3种抗力统计参数的计算结果,其中车辆荷载按汽车一般运行状态和密集运行状态2种情况考虑.可靠度分析结果表明:组合梁抗弯承载力和纵向抗剪承载力的可靠指标比较接近,当γ5=1.15时,一般运行状态可靠指标在5.0~5.9之间,密集运行状态可靠指标在5.4~6.5之间;竖向抗剪承载力的可靠指标较小,当γ5=1.15时,一般运行状态可靠指标在4.1~5.0之间,密集运行状态可靠指标在4.0~5.5之间.  相似文献   

15.
连续曲线组合梁桥在竖向荷载作用下会产生弯扭耦合效应,并且其负弯矩区的钢底板也存在受压失稳问题。为改善负弯矩区的钢底板受力情况,提出连续曲线梁桥负弯矩区双重组合的结构形式,即由混凝土桥面板、槽形钢梁及底部混凝土板通过连接件相结合,形成共同受力的截面结构形式。在负弯矩区域采用双重组合结构形式,不仅可以提高钢底板的受压稳定性能,亦能增强截面的抗弯和抗扭刚度。为探讨该结构的受力性能,本文通过有限元数值模拟方法,对负弯矩区双重组合结构混凝土底板的长度和厚度2个变量进行参数分析,研究偏载作用下,连续曲线双重组合梁桥截面的纵向畸变应力和畸变角变化情况,为提出双重组合曲线梁桥的混凝土底板设计提供参考。  相似文献   

16.
为探究连续曲线双工字钢-混凝土组合梁桥在弯扭组合作用下的力学性能,设计了一座曲线半径为200 m,跨径布置为17.5 m+17.5 m的连续曲线组合梁桥模型,并进行了静载试验,包括两点偏心弹性加载及四点对称破坏加载。试验测试了模型桥荷载-挠度关系曲线,控制截面钢梁、桥面板及钢筋应变分布,记录了模型桥的破坏过程及特征荷载,混凝土桥面板裂缝分布及裂缝宽度。结果表明:对称荷载作用下,曲率效应使外弧侧结构受力更不利;加载截面、中支点截面钢梁翼缘屈服后,第2跨加载点外弧钢梁腹板发生剪切屈曲,截面塑性转动能力受到钢板局部屈曲的限制;中支点桥面板裂缝分布范围超过计算跨径±20%;模型桥第2跨外梁破坏后,其他结构仍能继续承载,内弧侧结构延性指标远小于外弧侧,模型桥横桥向具有冗余性;竖向荷载作用下,模型桥弹性阶段截面正应力主要由弯曲正应力和约束扭转翘曲正应力组成,此外,钢梁下翼缘存在额外的横向弯曲正应力;最后,给出了钢梁下翼缘横向弯矩简化计算方法,并基于Vlasov薄壁结构理论,提出了双工字钢-混组合梁桥约束扭转截面特性计算方法。  相似文献   

17.
为改善常规混凝土波形钢腹板(CSW)组合梁受拉区的受力性能,进一步减小结构重量并推动超高性能混凝土(UHPC)在桥梁工程中的应用,提出一种新型变截面预应力CSW-UHPC组合箱梁结构,为研究其基本受力特征,特别是其抗弯与抗裂性能,设计并完成了一片预应力变截面CSW-UHPC组合悬臂箱梁的负弯矩静力模型试验,测试得到试验梁的荷载-应变响应、裂缝开展模式、挠度及破坏荷载等试验结果。依据试验结果对结构的剪力滞效应和钢腹板承剪比进行了研究;并深入研究了CSW-UHPC组合箱梁的抗裂性能和抗弯承载力计算方法;同时,完成了试验梁的非线性有限元分析。结果表明:这种变截面CSW-UHPC组合箱梁表现出良好的受力、变形和抗裂性能;试验梁的悬臂根部截面产生了负剪力滞效应,剪力滞效应越靠近加载点越明显;悬臂端部到根部截面,试验梁腹板承剪比从80.33%逐渐减小至2.15%;试验梁的极限抗弯承载能力和抗裂弯矩的理论值与试验值较为吻合,建议在计算承载力时,k值取为0.1~0.2。研究成果可为变截面预应力CSW-UHPC组合箱梁结构的设计与应用提供参考。  相似文献   

18.
该文对比中欧混凝土桥梁设计规范的可靠度指标、设计使用年限、极限状态划分、材料特性等。为实现快速设计,编制欧洲规范承载力计算程序,并辅以算例对比中欧规范正截面抗弯承载力的异同。结果表明:中国规范可靠度指标较欧洲规范更高,中欧规范混凝土抗压强度、应力应变关系差异较小,但欧洲规范钢筋最大强度比中国规范更大。中欧规范正截面抗弯承载力计算假定基本一致,但欧洲规范正截面抗弯承载力比中国规范略大。欧洲规范承载力计算软件有较好的精度,能够达到快速对比设计的目的。  相似文献   

19.
为探索新型结构波形钢腹板组合T梁的受力性能,制作了下翼板布置直线型体内纵向预应力筋的缩尺试验梁,采用两点对称加载的方式开展了静载破坏性试验,对试验梁的截面正应变分布、荷载-位移曲线、开裂弯矩、剪应力分布、破坏形态、裂缝发展规律等进行测试。使用ABAQUS软件建立了试验梁的有限元模型,采用混凝土的损伤塑性模型和钢材的理想弹塑性本构对加载全过程进行非线性分析。基于钢-混组合梁的收缩、徐变理论和钢筋混凝土梁的抗弯承载力计算方法,对试验梁的开裂荷载和抗弯承载力进行理论计算。结果表明:只布置下翼板纵向预应力筋的波形钢腹板组合T梁的荷载-位移全过程曲线表现出较明显的弹性、弹塑性和塑性变形阶段,具有较大的抗弯刚度和良好的抗裂性和延性;抗弯承载力与开裂荷载的比值为1.79,具有较合理的承载受力特点;整个加载过程中,钢腹板与混凝土翼板变形协调,表现为典型的受弯破坏形态;剪应力在波形钢腹板组合T梁的腹板中分布均匀,可不设置弯起筋提供抗剪承载力;忽略波形钢腹板的轴向变形刚度和抗弯承载力,能准确计算开裂荷载和抗弯承载力;波形钢腹板组合T梁的力学机理明确,静力性能良好,具有工程应用前景。  相似文献   

20.
为提高钢-混组合梁桥负弯矩区混凝土桥面板的抗裂性并简化现场施工工艺,提出新型钢-混组合梁桥负弯矩区超高性能混凝土(Ultra-high Performance Concrete,UHPC)接缝方案。以湖南省某桥为工程背景,进行1∶2缩尺模型抗弯试验研究;编制截面弯矩-曲率关系MATLAB程序,并与实测值进行对比,验证该程序可用于计算UHPC覆盖下的普通混凝土(NC)中钢筋应力;对现有NC裂缝宽度规范公式进行修正,提出考虑UHPC约束作用的组合梁负弯矩区NC最大裂缝宽度的建议公式;讨论钢-混组合梁桥负弯矩区UHPC湿接缝合理的纵桥向长度,分析UHPC层厚度及层内配筋对抗裂性能的影响。研究结果表明:新型UHPC接缝方案的抗裂性能和抗弯承载能力均满足工程要求,且接缝节点强度高于非接缝区预制部分强度;负弯矩作用下,试件沿梁高的应变较好地满足平截面假定,钢梁与混凝土板及UHPC与NC间的层间滑移量均较小;UHPC裂缝呈现“多而细”的特征,而NC裂缝呈现“少而宽”的特征,预制部分混凝土顶面最先开裂,之后UHPC-NC交界面、UHPC顶面、UHPC覆盖下的NC侧面依次出现裂缝;对于负弯矩区采用UHPC接缝的中小跨径钢-混组合连续梁桥,UHPC层的纵桥向长度宜为20%标准跨径,UHPC层厚度可根据实际工程设计要求确定,增大桥面板内钢筋直径可以提高负弯矩区混凝土的抗裂性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号