首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
为研究大体积混凝土水化热温度场的分布规律,了解冷却水管的具体降温效果以及相关参数对降温效果的影响,以某大跨桥梁大体积混凝土承台为工程背景,采用有限元方法建立承台实体模型,模拟混凝土水化热温度场,分析冷却水管的质量流率和初始温度等参数对混凝土水化热温度场的影响。结果表明:混凝土浇筑后的水化热温度场总体呈现出先升后降的趋势,一般浇筑后2~3d达到温度峰值;布置冷却水管后,混凝土水化热的温度峰值降低了7%~31%,混凝土内总热量减少了约50%;改变冷却水管的质量流率对水化热温度场升温阶段的影响很小,对降温阶段的影响比升温阶段有所增大;降低冷却水初始温度可以加快水化热冷却速率,实际工程中,不必将冷却水温降得过低,保持在环境温度左右即可达到良好的冷却效果。  相似文献   

2.
为研究南洞庭湖特大桥塔座及首节塔柱大体积混凝土在浇筑过程中的温度应力水平,采用有限元仿真软件建立模型,分析现场浇筑情况下大体积混凝土温度及温度应力随龄期的变化情况,对比混凝土中有无设置冷却水管对大体积混凝土温控的重要影响。  相似文献   

3.
为解决海洋环境下大体积混凝土开裂问题,通过对大体积混凝土开裂原因分析,制定了主通航孔桥承台大体积混凝土温控标准。根据温控标准,采取了原材料优选、优化混凝土配合比设计、缩短层间间歇期、降低混凝土入模温度、混凝土表面二次收面、冷却水管设计和聚苯板保温材料使用等方法,进行施工过程控制。监测结果表明混凝土各项温控指标均满足要求,未发现混凝土开裂现象,达到了混凝土防裂效果。  相似文献   

4.
文中依托某桥主墩承台大体积混凝土工程,对大体积混凝土进行了温度场数值模拟和现场温度监测结果分析。通过ANSYS有限元分析软件,采用SOLID70热单元,选定与施工温度监测相同的断面进行有限元分析。此外,利用实测温度和冷却水管出入口水温温差,对本工程的大体积混凝土温控技术进行评价。  相似文献   

5.
罗超云  李志生  周立 《公路》2012,(7):101-106
嘉绍大桥处于海洋环境,承台为深埋式,对混凝土耐久性要求高。主桥单个承台C30混凝土方量近8 000m3。通过对承台大体积混凝土配合比优化、原材料控制、浇筑过程控制及混凝土养护等方面进行详细分析和总结,并通过实时的温度监测数据分析,达到了海洋环境下高性能超大体积混凝土在取消冷却水管的条件下保证温控质量的目标。  相似文献   

6.
为避免特大方量异形结构大体积混凝土施工过程中产生温度裂缝,以沪通长江大桥桥塔下横梁为工程背景,采用MIDAS软件建立大型有限元温度场模型。针对下横梁大体积(11 600m~3)、高强度(C60)、结构不规则的特点,以内部最高温度及最大主拉应力为主控参数,优化冷却水管布置及相关参数选取。结果表明:冷却水管布置的间距越小、根数越多,下横梁混凝土降温越快,这会造成混凝土内部收缩过快,使得最大主拉应力变大;冷却水管通水温度越低、通水时间越长、通水流速越大,会导致与混凝土内部温差过大,增加收缩应力。实践证明,采用优化的方案后,各项温度参数均满足规范要求,有效地避免了结构产生有害的温度裂缝。  相似文献   

7.
该文以某斜拉桥承台大体积混凝土基础施工控制为例,从承台模板制作安装、钢筋及冷却水管施工、混凝土配合比设计和模拟试验、温控设计、防裂措施、混凝土浇筑等方面对大型桥梁大体积承台混凝土施工控制技术进行了分析和总结。  相似文献   

8.
为研究冷却水对大体积混凝土温度场的影响和发展变化,文章以金安金沙江大桥大体积混凝承台浇筑工程为例,对其施工和养护期间水化热温度进行连续监测。根据实测水化热温度进行冷却水流速和流量控制,提出采用变速控制水冷管流速的方法。利用瞬态温度场三维有限元理论方法,应用有限元计算软件建立模型,进行水冷管参数对比分析。分析结果表明:冷却水对混凝土降温有显著效果,在水泥用量不变的情况下,合理调整水冷管流速等因素能有效控制水化热温升变化,防止有害裂缝的产生。  相似文献   

9.
以上海市张泾河泵闸工程为例,从材料性能、通水冷却及保温、温控监测等方面探讨了泵闸工程大体积混凝土施工期精细化温控防裂技术。通过室内试验及现场大体积混凝土试验获得仿真分析所需的材料热力学参数及表面散热系数,并用于现场混凝土温度场的反馈分析。最后对比分析了通水流量及冷却水管规格对混凝土温度场的影响,结果显示管材及管径对混凝土最高温度及温降速率有较大影响,建议早期采用管径40 mm以上钢管及4 m3/h以上冷却水流量。  相似文献   

10.
谢伟英  黄顺祥  丘庆发 《公路》2007,(1):218-220
对东沙大桥主塔承台大体积混凝土配合比及施工工艺进行了研究,为防止大体积混凝土因水化热产生开裂提供技术平台。研究结果表明:采用低水泥用量、大掺量矿物掺合料和高效缓凝减水剂的“三掺”混凝土配制技术,运用密实骨架堆积理论对混凝土配合比进行优化设计,同时通过预埋冷却水管降温措施及严格的施工管理,不仅有效地防止混凝土由温度应力而出现的裂缝,而且大幅地降低了工程造价。  相似文献   

11.
大体积混凝土的浇筑必须采取措施以避免因水化热引起的内表温差过大而导致裂缝。该文介绍了浇筑某承台大体积混凝土所采取的温控方案,包括混凝土原材料选用原则、冷却水管的设计和测温系统的设计等,并介绍了其实施效果。由于该温控方案较为合理,现场施工组织细致,因而避免了有害的温度裂缝的产生,保证了承台大体积混凝土的工程质量。  相似文献   

12.
以贵州北盘江大桥3#主塔承台大体积混凝土施工为例,介绍了在水资源严重匮乏的贵州山区进行大体积混凝土温控施工的经验。通过对冷却水循环系统进行改进,对冷却水进行强制降温,使得冷却水得以回收利用,并采取优化混凝土配合比、控制混凝土浇筑温度以及混凝土表面保温养护等一系列措施,确保了大体积混凝土施工圆满成功。  相似文献   

13.
大连星海湾跨海大桥锚碇锚体为大体积混凝土结构;混凝土采用等级为C45F350W6的海工高性能混凝土,设计基准期100年。为了保证锚碇混凝土的高耐久性,防止有害的温度应力裂缝产生,在大体积混凝土施工中采取了一系列的温控措施,如对锚体合理分层分块施工、优化配合比设计、控制浇注温度等,同时还在混凝土外露面侧设置防裂钢筋焊网,在混凝土内部则埋设冷却水管并采用无线温度监测系统进行实时温度控制,从而确保施工质量可靠受控。  相似文献   

14.
通过对某寒冷气温下施工的斜拉桥承台大体积混凝土水化热进行数值模拟和现场监测承台水化热温度,对比分析低温冷却水和长冷却管管长对承台水化热温度发展变化规律的影响。研究结果表明,综合考虑混凝土入模温度、混凝土配合比、外加剂、冷却管的管径和布置形式以及混凝土养护方式等因素,采用低温冷却水和长冷却管管长方案,能有效避免大体积混凝土水化热温度产生裂缝,可为同类大体积混凝土在寒冷气温下施工提供参考。  相似文献   

15.
虎门二桥大沙水道桥东锚碇锚体都是大体积混凝土,针对大体积混凝土施工进行了混凝土配合比设计和试验研究,结果表明核电水泥(低热硅酸盐水泥)掺合粉煤灰、矿渣粉以及超缓凝性高性能减水剂的应用,可以有效地降低水化热速率和延缓放热峰值,再通过降低混凝土入模温度及冷却水管等降温措施,大大降低了温峰和内外温差,有效地控制锚体混凝土的开裂。  相似文献   

16.
大体积抗渗抗冻混凝土施工技术   总被引:1,自引:0,他引:1  
郑力 《桥梁建设》2002,(5):59-62
丹拉高速3合同天津海河大桥主桥为双塔双它面斜拉桥,主塔承台混凝土总量为5996m^3。以该承台为例介绍北方地区具有抗渗抗冻要求的林体积混凝土的施工工艺及温度控制、养护措施等,涉及采用60d设计强度、合理布置冷却水管等方面。  相似文献   

17.
蒋赣猷  李莘哲  韦苡松 《公路》2023,(2):147-151
以龙门大桥锚碇顶板8 m厚大体积混凝土一次浇筑为例,在有限元仿真计算的基础上,采取水化温升低、抗裂性能高的大体积混凝土配置技术、使用碘钨灯对后浇带进行加热保温、合理使用冷却水管以及使用温缩诱导纤维等温控措施,并进行现场温度监控。实测顶板混凝土内部温度与仿真计算结果基本一致,各项温控数据均满足温控标准的要求,经现场跟踪观察,未发现明显可见温度裂缝,温控效果良好。  相似文献   

18.
《中外公路》2021,41(3):83-88
桥梁的承台混凝土体积大,施工措施不当易产生温度裂缝,从而影响桥梁结构的耐久性,因此有必要对大体积混凝土施工温度场及温控技术进行研究。该文以南沙港铁路西江特大桥承台施工为背景,对自然冷却时温度场的变化规律进行数值分析,并对冷却水管的布置方式进行对比分析,进而开展承台智能温控系统设计和现场施工实践。结果表明:夏季自然冷却状态下,承台内部大部分区域温度场趋于一致,在靠近外侧面附近温度略有下降,在靠近顶部附近温度梯度较大;冷却管长度对散热影响较小,分区布置管道(冷却水从独立直管进入,从蛇形管流出)降温效率高,所设计并采用的智能温控系统具有较好的温控效果。  相似文献   

19.
大体积混凝土施工期的水化热温度场仿真分析   总被引:5,自引:0,他引:5  
王解军  卢二侠  李辉 《中外公路》2006,26(6):159-165
该文运用三维有限元分析软件对一超高墩连续刚构桥的大体积混凝土承台实际施工过程的温度场进行了全程仿真计算,考虑了冷却水管的作用,并与现场的实测结果进行了比较,分析了误差产生的原因。  相似文献   

20.
公路建设中,尤其是桥梁承台等大体积混凝土的施工过程中,一般采用冷却水降温方式处理由水化热造成的病害,以更好地控制混凝土因水化热引起的开裂。采用有限元模型对混凝土内部降温过程进行模拟,并分析不同冷却水温度下降温方案的优劣,分析结果可为同类工程设计和施工提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号