首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
五峰山长江特大桥主桥为主跨1 092m的钢桁梁公铁两用悬索桥,北锚碇采用100.7m×72.1m×56m的沉井基础。该沉井首节采用钢壳混凝土结构、其余9节采用钢筋混凝土结构,采用"三次接高、三次下沉"的方案施工。为及时掌握沉井下沉施工过程中的几何姿态及受力情况,建立实时在线监测系统,对沉井几何姿态、沉井结构应力及沉井刃脚土压力进行自动化监测,基于监测数据及时进行沉井下沉控制。结果表明:下沉过程中沉井测点高差和倾斜度均在限值内,沉井挠度基本在20mm限值内,沉井几何姿态较好;沉井混凝土及钢结构测点的实测应力基本在限值范围内,沉井刃脚各测点的土压力均控制在1.20MPa限值内,沉井结构受力良好。  相似文献   

2.
分析刃脚土阻力与侧壁摩阻力的大小和变化规律是沉井设计计算的重要内容,现有规范中所给的计算方法是否适用于大型沉井基础的设计计算,还需进一步验证。为此,通过布置刃脚踏面土压力传感器、侧壁土压力传感器以及GPS沉井姿态监测系统,对沪通长江大桥主墩沉井的下沉阻力开展了现场监测。结合大量现场监测资料,分析了大型沉井基础下沉期间的下沉机理与下沉阻力分布特征,对目前沉井下沉阻力计算中常用的规范和计算方法的适用性进行了分析,结果表明:目前的设计计算方法在计算刃脚土阻力时均未考虑刃脚所在土层前期固结压力的影响,因此,此类计算方法仅适用于沉井入土深度较小、刃脚所在土层前期固结压力不大的情况,当沉井入土深度较大时,计算值与实际值相比明显偏小;由于压力松弛效应,沉井侧壁摩阻力随入土深度的增大呈先增大后减小的变化规律,压力松弛区影响高度≥5 m。另根据现场监测结果,提出了侧壁摩阻力分布简化模型,分为以下3个阶段:第1阶段为线性增加阶段,侧壁摩阻力分布模式为三角形分布;第2阶段为压力松弛影响阶段,侧壁摩阻力分布模式为三角形分布+倒三角形分布;第3阶段为压力松弛下移阶段,摩阻力分布模式为梯形分布。研究结果可为沉井设计计算方法的优化提供参考。  相似文献   

3.
南京长江第四大桥北锚碇沉井基础施工监控技术   总被引:2,自引:0,他引:2  
南京长江第四大桥北锚碇采用沉井基础,尺寸为69.0 m×58.0 m×52.8 m,距长江大堤仅90 m.沉井体积庞大,所处区域地质条件复杂,覆盖层较厚.依据规范并结合以往的施工经验,提出沉井几何姿态监控标准.介绍沉井下沉深度和平面位置及偏斜、刃脚踏面反力、沉井侧壁土压力、沉井结构应力、地下水位与井内水位、沉井底部土体开挖地形、地表沉降和长江防洪大堤沉降量的监测方案.通过施工监测,掌握沉井下沉的实时信息,为施工提供指导信息,确保施工安全顺利进行.  相似文献   

4.
介绍了泰州长江大桥南锚碇沉井基础的施工特点和下沉阻力现场监测技术。在下沉过程中,采用土压力计监测了每节沉井的侧壁土压力和沉井的刃脚土压力。通过这些监测数据的整理和规律分析,既控制了沉井的安全平稳的下沉,也为同类型的大型沉井的设计和施工提供了可以参考的依据。  相似文献   

5.
沉井周边地质情况是沉井的设计及沉井下沉施工的主要因素,沉井的平稳下沉及成功下沉到设计位置是沉井施工的关键,因此有必要对沉井下沉过程的沉井仞脚土压力和井壁摩阻力进行实时监测,以指导沉井的信息化施工。四川金沙江向家坝水电站10号沉井仞脚土压力和井壁摩阻力的实时监测结果表明,监测数据真实地反映了沉井周边的地质情况,指导了沉井的信息化施工。  相似文献   

6.
以温州市鹿城区七都岛—铁塔公园段跨瓯江电力隧道工程七都岛侧沉井基础为研究对象,对沉井在软土地基中下沉进行监测研究,通过现场监测数据分析,对沉井侧摩阻力、刃脚底部压力、沉井外土面沉降进行分析,得出沉井在软土地基中的下沉特性,这对理论研究与实际工程设计都有参考意义。现场监测数据结果表明:在软土地基中沉井侧摩阻力随着沉井入土深度的增加呈线性增加,到达一定峰值后缓慢降低;下沉过程中刃脚土压力的波动较为剧烈,其中刃脚斜面阻力占同一深度踏面阻力的10%左右;沉井下沉对周边土体沉降的影响范围比沉井在其他土体中小10%左右,为沉井下沉深度的10%左右。  相似文献   

7.
董晓朋 《路基工程》2018,(1):108-114
沪通长江大桥为公铁两用斜拉桥,其中29号主墩采用倒圆角的矩形沉井基础,结合现场施工,在钢壳沉井的不同截面上安装土压力盒和钢板应变计等监测元件,对沉井侧壁和隔墙不同位置的受力进行监测。结果表明:在大锅底开挖情况下,沉井受力类似深梁构件,两侧受压中间受拉,且中间隔墙的拉应力会随着沉井的不断接高而逐渐减小,最后变为压应力;沉井在施工中倾斜时,同一断面对称位置的受力有很大区别,且在沉井姿态稍有变化时,同一位置的受力也会发生突变,故应尽量保证沉井的姿态垂直;沉井在吸泥下沉过程中,会发生翻砂、突沉的情况,对沉井的受力会有很大的影响,这些影响可在钢板应变计的监测上有所体现。  相似文献   

8.
为了解深厚淤泥土层中大型沉井基础下沉阻力的分布特征,以温州瓯江北口大桥(主桥为主跨800m的三塔钢桁梁悬索桥)为背景,对中塔沉井基础下沉阻力监测数据进行分析,研究侧壁土压力、底面支承反力分布规律,以及刃脚底面反力与静力触探指标之间相关性。结果表明:淤泥土地层中施工的大型沉井基础,其侧壁压力沿深度方向近似线性增长,其值略大于相同深度位置的水土自重压力;沉井刃脚底面及斜面的反力值在底口入土一定深度后保持稳定,刃脚底面与斜面反力的比值为1.8~2.2,相对稳定;刃脚底面反力值与静力触探试验的锥尖阻力具有较高的相关性,在沉井底口中心下沉到一定深度后,其比值为1.4~2.2。  相似文献   

9.
为确保南京长江第四大桥北锚碇沉井安全、顺利地下沉至设计标高,在沉井施工过程中实施了信息化的监控技术,主要介绍了北锚碇沉井施工过程中的信息化监控技术,包括监控元器件的布设、结构应力应变的监控、侧壁土压力的监控、监控数据的分析等内容。  相似文献   

10.
以某沿海大型污水处理构筑物沉井为例,通过对比分析沉井初沉前不同预制高度(第一节)条件下的基底压力、地基承载力及不同刃脚下沉深度的阻力,对沉井施工过程中可能发生的问题进行预测;提出了基于基底压力、修正地基承载力分别与砂垫层厚度的曲线及交点进行沉井预制前临时基础铺设砂垫层厚度优化,基于地层界面处刃脚下取土和刃脚下留土两种取土方法的下沉系数与合理区间[1.05, 1.25]的关系进行沉井实施方案优化的方法。以计算结果和变化规律为基础预测可能发生的问题,与现场实际基本一致;对实施方案进行合理优化,确保了沉井的顺利实施。  相似文献   

11.
官厅水库特大桥为主跨720m的单跨悬索桥。大桥南岸锚碇基础为33m高全钢筋混凝土沉井结构,标准平面尺寸为56m×50m。沉井中心距离京包铁路线仅60m,墩位处地质结构主要为粉质黏土和圆砾土。为对既有铁路线进行防护,采用单排钻孔灌注桩作为防护桩,在沉井施工之前完成防护桩的施工。沉井接高之前直接在地面根据沉井刃脚仿形开挖沟槽,沉井底节采用土模法在沟槽内安装模板和绑扎钢筋进行接高,底节完成后沉井采用翻模法正常接高,单次接高3m,接高到15m后开始第1次下沉施工。沉井共分2次下沉施工,进入地下水5m前采用干挖取土下沉,之后采用水下吸泥取土下沉。下沉施工采用潜水泵水下高压射水辅助吸泥,空气幕实施助沉。施工过程快速、平稳有序,确保了铁路路基的稳定,沉井按设计要求下沉到位。  相似文献   

12.
泰州长江公路大桥主桥为三塔悬索桥,中塔采用超大型深水沉井基础。沉井平面采用倒圆角矩形,高76 m,下部为钢壳混凝土结构,上部为钢筋混凝土结构。结合该桥中塔沉井施工方法,对其在整个施工和使用过程中的最不利状态进行结构设计和验算。计算结果表明:沉井在浮运阶段倾斜角φ=0.6°,ρ-a=7.1 m;下沉至设计标高,刃脚下的土已被掏空的情况下,刃脚根部以上高度等于该处壁厚的一段沉井的井壁最大压应力为9.34 MPa;沉井最大和最小基底应力分别为1.64 MPa和0.159 MPa;沉井理论沉降量为2.5 cm,实际预留沉降量为5 cm,均满足规范要求。  相似文献   

13.
常泰长江大桥主航道桥为主跨1 176m公铁合建斜拉桥,通过技术经济综合比选,桥塔基础采用沉井方案。针对超大型沉井基础截面尺寸大、自重重、入土深等问题,提出了减自重、减冲刷的新型台阶型沉井基础方案,通过模型试验及数值分析确定了沉井相关设计参数,并基于地基中土体的三维应力状态和摩尔-库伦强度破坏准则,建立了深大基础三维地基承载力计算表达式。沉井基础成功实施的关键是可控的取土下沉措施,研究了超大型沉井下沉机理,探明随着沉井平面尺度的不断增大,端阻力与井壁侧摩阻力相比逐渐成为控制因素,沉井下沉施工必须进行盲区取土。通过对沉井刃脚下土体破坏形态的研究,提出土体破坏的临界宽度控制法和台阶式取土法,可为沉井下沉施工提供指导。  相似文献   

14.
《公路》2017,(9)
某大跨悬索桥的索塔采用沉井基础,因其体积大、施工水域深,着床定位时采取了导向墩定位的施工方法,同时采用GPS RTK技术对沉井下沉施工进行实时监测,并通过软件实时解算出沉井的空间几何姿态。该技术受天气等外界环境因素影响小,为沉井顺利施工提供了有力保障,有利于缩短工期,节省成本,可为类似工程提供借鉴。  相似文献   

15.
为解决泰州长江公路大桥在复杂条件下深水沉井定位难、摆动大等难题,以该桥中塔沉井为例,采用河工模型试验、CFD方法分析沉井着床阶段的河床冲刷形态和沉井摆动,同时研究终沉阶段下沉系数和沉井施工监控系统.根据分析研究结果,沉井定位采用“钢锚墩+锚系”的半刚性定位系统;采用“小锅底”取土方式下沉;采用信息化实时监控系统实时监测沉井空间几何姿态,确保了沉井准确定位与平稳下沉,最终将其平面误差控制在30 cm以内,垂直度误差为1/363.  相似文献   

16.
沪通长江大桥主航道桥为(140+462+1 092+462+140)m双塔连续钢桁梁斜拉桥,29号主墩采用倒圆角的矩形沉井基础。为研究沉井施工及桥梁施工后沉井结构与地基间的受力特性,采用ABAQUS有限元软件建立沉井-地基相互作用的三维实体模型,分析5种荷载组合下沉井基底和侧壁土体的应力和变形。结果表明,沉井施工和桥梁施工后,沉井基底和侧壁土体应力沿纵、横向分布差异较大;基底的竖向应力相对较为均匀,沉井隔墙对应处基底土体的附加应力略大;沉井深度范围内侧壁土体的附加应力受相应隔墙位置的影响显著;地基土体和沉井结构产生了一定的沉降变形,沉井的沉降差异主要由架梁引起,且对桥梁上部结构影响较大。  相似文献   

17.
针对淤泥地层中压入式沉井下沉所产生的挤土效应及其环境影响问题,结合某超深地下车库工程,分析沉井压入挤土引起 的土体变形机制,并采用耦合欧拉-拉格朗日(CEL)法对下沉过程进行模拟,重点研究压入式下沉所引起的挤土效应。 研究结果表 明: 1)从土体位移来看,压入式沉井下沉挤土将引起地层发生4种典型变形,分别为井内土塞区的土体上拱、井边沉降区的土体被 带动下沉、稍远的主要隆起区的土体受挤压向上隆起及再远处的次要隆起区的土体隆起幅度逐渐减小; 2)下沉速度越快,竖向挤 土效应越大而水平挤土效应越小,刃脚挤压应力也越大,而当下沉速度为0.2~0.3 m/d时挤土效应最小; 3)土体压缩模量增大,竖 向和水平的挤土效应都会增大,且压缩模量小于2.03 MPa时挤土效应较小; 4)隔离桩可以较好地限制挤土效应引起的土体位移, 但相应地也会使挤压应力增大; 5)为控制挤土效应,建议沉井压入下沉过程中遇到高压缩性的软弱地层时以压入为主,而在遇到 相对较坚硬的地层时则应更多进行井内取土辅助压入。  相似文献   

18.
在卵石层以及卵石层与风化花岗岩交界层中,沉井容易遇到大漂石搁置刃脚,从而出现下沉困难和偏斜问题。针对此问题,采取水下钻孔松动爆破技术及潜水员水下处理,清除刃脚底部漂石(最大颗粒漂石直径达到1.4m),从而使沉井下沉并有效控制纠偏,确保沉井均匀下沉至设计标高。  相似文献   

19.
马鞍山长江大桥南锚碇采用沉井基础,沉井入土深度超过50m,其施工采用“3次接高,3次下沉”的工艺:第1次下沉采用降排水措施,第2次下沉采用半排水措施,第3次下沉采用不排水措施。在沉井第3次下沉过程中,开启空气幕助沉,显著加快了下沉速度。沉井下沉期间,采用综合监控手段,保证了沉井顺利、精确下沉。实践证明,该桥所采用的沉井下沉方案科学合理,下沉到位后沉井几何姿态良好。  相似文献   

20.
武汉杨泗港长江大桥主桥为主跨1 700m的双层钢桁梁悬索桥,2个桥塔墩均采用沉井基础,沉井基底持力层均为硬塑黏土层,其中,1号和2号桥塔墩沉井需分别在硬塑黏土层中下沉6.2m和10.6m。2个桥塔墩沉井均采用不排水法下沉,当沉井刃脚进入硬塑黏土层后,井孔内的硬塑黏土采用绞吸法取土,先利用潜水挖泥机对土体进行强制式切削,再利用吸泥管将钻屑与水的混合物排出;刃脚下方的硬塑黏土采用水下爆破法取土,先将硬塑黏土炸松后抛掷到井孔内,再利用潜水挖泥机取出;沉井下沉时还采取了空气幕助沉技术。最终2个桥塔墩沉井基础在硬塑黏土中均顺利下沉到位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号