首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 636 毫秒
1.
以某三线合一、三塔悬索桥的2种设计方案(钢箱桁和钢桁方案)为工程背景,通过车桥系统节段模型风洞试验,测试了车辆和桥梁的三分力系数,并基于风-车-桥系统空间耦合动力学模型,采用自主研发的桥梁分析软件BANSYS,对比分析了该桥的结构动力特性与风-车-桥耦合振动性能。分析结果表明:三线合一、三塔悬索桥结构自振频率较低;车辆气动力受轨道位置的影响较大,钢桁方案迎风侧车辆阻力系数约为钢箱桁方案的2.2倍;当风速为0时,桥梁、车辆的动力响应总体上是随车速的增大而增大,在同一车速下,钢桁方案的桥梁位移较钢箱桁方案大,主要是由于钢桁方案的桥梁整体刚度略弱于钢箱桁方案;当考虑风速影响时,桥梁的横向响应随风速的增大而显著增大;车辆位于迎风侧,风速为25m·s~(-1)时,钢箱桁方案和钢桁方案的桥梁横向位移约分别为风速为15m·s~(-1)时的位移的2.4倍和3.8倍,横风对桥梁的横向响应起主导作用;同一风速时钢桁方案的桥梁响应总体上较钢箱桁方案大;同一方案时车辆响应随风速的增大而增大,当风速达到25m·s~(-1)时,车辆动力响应显著增加,相比15m·s~(-1)时最大增加幅度为71.6%。  相似文献   

2.
将随机车流模型在桥梁工程的确定性分析扩展至建立动力响应的概率模型,提出了基于位移首超破坏准则的随机车流作用下斜拉桥主梁位移首超动力可靠度分析方法。某大跨度斜拉桥在车辆荷载作用下主梁跨中位移的数值分析结果表明了该方法的适用性。研究结果表明:随机车流模型包含了车辆的概率分布特征,结合桥梁的有限元数值分析可建立桥梁动力响应的概率分布模型;随机车流作用下斜拉桥的位移响应为非零均值的高斯平稳随机过程,符合基于首超准则的Possion分布假定;车辆荷载作用下斜拉桥位移首超失效事件主要是由于密集运行车辆导致,密集运行车辆的占有率对桥梁动力可靠度影响显著。  相似文献   

3.
在横向风荷载的作用下,桥梁会产生风荷载本身引起的动力响应,且风荷载会对车桥系统耦合振动起到激励作用,使车桥系统的动力响应明显增大。结合工程实例,把车、桥、风作为一个整体耦合振动系统,车辆荷载采用随机车流分布荷载,对车桥系统在风速不相等的风速场里的振动响应进行分析与评价,并对桥上汽车进行了动力响应分析和评价。  相似文献   

4.
悬索桥跨径越大,结构越轻柔,对风致振动越敏感,因此,研究悬索桥主梁抗风性能尤为重要。对某主跨1196m大跨度悬索桥,采用有限元建模计算分析了成桥状态的结构动力特性;通过静力节段模型试验,测试了成桥状态主梁的三分力系数,结果表明:该扁平加劲梁整体上具有较好的静风稳定性能;通过动力节段模型试验考察了成桥状态桥梁在风攻角为0°、±3°、±5°下的颤振稳定性能,风攻角为+3°和+5°时,颤振临界风速接近或低于颤振检验风速,其余风攻角下颤振稳定性能良好;通过优化人行栏杆构造、增大透风率对主梁断面进行优化,有效改善了主梁断面的气动性能。  相似文献   

5.
为探讨三塔悬索桥与两塔悬索桥静动力特性差异与中塔选型,以泰州长江大桥为原型,基于有限位移理论建立相应的两塔、三塔(混凝土中塔与钢中塔)悬索桥的空间有限元模型,分析了各种结构参数下的静力和地震效应。研究结果表明:与两塔悬索桥相比,由于中塔顶缺乏边缆的有效纵向约束,三塔悬索桥整体刚度较小,变形较大,自振频率低;汽车作用下主...  相似文献   

6.
依托南京长江第二大桥健康监测系统实测数据的分析,对斜拉桥纵向位移与温度的关系进行了分析,发现其基本呈现出线性的关系,但在较长时间段里呈现出较弱的非线性关系,这一较弱的非线性关系在对伸缩缝进行安全评估时,可以利用线性关系替代;斜拉桥的非线性热膨胀效应强于悬索桥的非线性热膨胀效应,可以指导斜拉桥运营期的安全预警阈值的设定工作以及桥梁安全状态评估工作,对今后斜拉桥的设计以及养护具有一定的指导作用。  相似文献   

7.
依据梁轨相互作用原理, 提出了基于悬索桥成桥变形状态重构道床纵向阻力位移-力曲线的方法, 并从存在初始位移的5×32 m简支梁桥上无缝线路钢轨受力和变形两方面验证了重构方法的可行性; 结合多单元建模方法与U.L.列式法, 建立了考虑悬索桥初始内力和几何非线性的线-梁-索-缆-塔空间计算模型, 以某(2×84+1 092+2×84) m大跨悬索桥为例, 对比分析了不同工况下悬索桥初始内力与几何非线性对梁轨相互作用的影响。分析结果表明: 提出的道床纵向阻力重构方法能够避免桥梁初始变形对梁轨相互作用的影响, 使悬索桥上无缝线路计算模型能考虑初始内力的影响; 主缆垂度效应对各工况下梁轨相互作用的影响不足1%, 计算中可忽略该因素; 悬索桥初始内力主要影响挠曲、制动及断轨工况, 可使挠曲力、制动力及断缝值分别降低22.4%、12.7%和9.3%;大变形效应不仅可以改变挠曲力分布规律, 还可大幅减小断缝值, 降幅达22.4%;建议悬索桥上无缝线路在挠曲、制动及断轨工况下应考虑初始内力与大变形效应的影响, 伸缩工况下可将悬索桥简化为同等跨度的跨中纵向约束、梁端自由的连续梁桥进行计算; 建立的计算模型可为悬索桥上无缝线路设计提供精确的仿真结果。   相似文献   

8.
基于GPS技术的大跨桥梁实时动态监测系统   总被引:1,自引:0,他引:1  
大跨度桥梁,特别是主梁为钢结构的跨江大桥,其变形受台风、地震、车辆以及温度变化等因素的影响很大,对其进行实时动态的变形监测,能够获取桥梁在各种荷载作用下的变形数据,了解其工作状况,进一步掌握其变化规律。以江阴大桥结构健康监测系统中的GPS桥形在线监测系统为例,详细介绍了GPS监测系统的组成和数据分析,实践证明,该系统能够精确地记录大桥在车辆、风荷载以及温度变化情况下结构主梁和主塔的位移特征,从而为验证结构抗风、抗震设计和大桥的日常安全维护提供可靠依据。  相似文献   

9.
风荷载-列车-大跨度桥梁系统非线性耦合振动分析   总被引:1,自引:0,他引:1  
考虑桥梁结构的几何非线性因素,建立了风-列车-桥梁系统耦合振动分析模型.以某大跨度钢桁梁桥为例,计算了静风及脉动风荷载的不同作用效应、风速及车速变化对桥梁位移极值的影响及桥梁几何非线性因素对结构分析的影响.结果表明,进行车桥耦合振动分析时要综合考虑风荷载的动力作用,风速及车速变化对桥梁位移极值均有较大影响,桥梁的线性及非线性位移时程曲线存在明显区别.  相似文献   

10.
双缆悬索桥的静力特性及其关键影响因素   总被引:1,自引:0,他引:1  
双缆悬索桥体系是一种适用于大跨度多塔悬索桥的结构体系,为了对该类悬索桥体系的受力特性开展深入研究,基于有限元方法对其静力特性以及关键设计参数的影响效应进行对比分析. 首先以一座典型的单缆多塔悬索桥为参照,选定双缆多塔悬索桥的关键设计参数,建立两类多塔悬索桥的有限元模型;其次基于所建立的有限元模型,对比分析两类多塔悬索桥体系的竖向刚度差异;最后研究双缆悬索桥体系,边主跨比、中塔刚度、恒载分配比和矢跨比等关键设计参数对于中塔塔顶主缆总的不平衡力、中塔塔顶最大纵向位移以及主梁跨中最大挠度的影响效应. 研究结果表明:相比单缆多塔悬索桥,双缆多塔悬索桥能够有效提高结构的竖向刚度,同时大幅减小中塔塔顶主缆总的不平衡力;减小边主跨比对双缆结构体系竖向刚度和塔顶主缆总的不平衡力的影响较小;增大中塔刚度可以显著提高双缆结构体系的竖向刚度,但是中塔塔顶主缆总的不平衡力有较大幅度的增加;恒载分配比例取为1.0~2.0时,双缆结构体系的中塔塔顶位移及主梁跨中挠度较小;减小顶缆矢高或者增大底缆矢高均可以显著提高双缆结构体系的竖向刚度,有效减小主梁跨中挠度和中塔塔顶位移.   相似文献   

11.
以刘家峡大桥为工程背景,建立了钢桁架梁悬索桥的有限元模型,采用改进谐波合成法模拟了脉动风荷载,结合大跨桥梁颤抖振分析的基本理论,计算了对应于桥梁各节点的静风力、抖振力和自激力.在此基础上,利用ANSYS参数化设计语言(APDL)编制了相应的计算程序,将计算所得的各类风荷载施加在全桥有限元模型的节点上,对刘家峡桁架梁悬索桥进行了颤抖振时域分析,以精确求解不同桥面基准风速下,桥梁各关键部位的抖振扭转角、抖振侧向位移、抖振竖向位移,进而研究了风速变化对悬索桥最大颤抖振响应的影响.与全桥模型风洞试验的对比结果表明:对大跨桥的颤抖振分析方法是合理可行的,可为同类大跨桥梁风致振动的研究提供科学的依据和参考.  相似文献   

12.
为了研究山区非平稳强风下大跨悬索桥静风及抖振响应,以云南普立大桥为工程背景,基于该桥址处实测风速样本,对大跨桥梁展开风致响应分析.首先,根据实测风速样本确定了时变平均风并且估计了脉动风谱.然后,在考虑了恒载结构初始内力状态下进行了非线性静风响应分析.最后,采用虚拟激励法分别针对实测风谱与规范风谱对该桥进行了抖振响应研究.计算结果表明,该大桥的抖振以竖向振动为主,并且其位移响应比静风突出; 10 min常值平均风会低估该桥的静风响应;由规范风谱得到的主梁抖振响应偏于不安全.研究结论可为同类山区大跨桥梁风致静力及抖振响应研究提供参考.   相似文献   

13.
为研究山区峡谷大跨度钢桁梁悬索桥的颤振稳定性及其气动性能优化措施,以某大跨度钢桁架梁悬索桥为工程背景,通过有限元计算分析及主梁节段模型风洞试验,研究其主梁颤振稳定性能.针对大桥颤振临界风速低于颤振检验风速,设计并试验对比了封闭桥面板中央开槽、中央上稳定板和中央下稳定板三种气动优化方案.试验结果表明,采用格栅板封闭桥面板中央开槽并设置中央下稳定板能有效提高大桥的颤振稳定性.  相似文献   

14.
为实现实际动态交通环境下智能汽车的变道控制, 提出了基于轨迹预瞄的智能汽车变道动态轨迹规划与跟踪控制策略; 针对实际交通环境下目标车道车速和加速度的动态变化, 提出了智能汽车变道动态轨迹规划算法, 获得了能够避免智能汽车发生碰撞的变道轨迹的动态最大纵向长度; 设计了兼顾变道效率和乘员舒适性的优化目标函数, 优化获得了在变道轨迹最大纵向长度范围内的实时动态最优变道轨迹; 利用轨迹预瞄前馈和状态反馈相结合的类人转向控制方式, 实现了智能汽车变道动态轨迹跟踪和乘员舒适性的最优控制, 并利用硬件在环试验台验证了所提控制策略的正确性。研究结果表明: 定速工况下实际与参考轨迹的侧向位移误差、航向角误差和最大侧向加速度分别为1.4%、4.8%和0.59 m·s-2; 定加速度工况下实际与参考轨迹的侧向位移误差、航向角误差和最大侧向加速度分别为1.1%、4.6%和0.48 m·s-2; 变加速度激烈工况下实际与参考轨迹的侧向位移误差和最大侧向加速度分别为1.7%和0.80 m·s-2, 航向角超调后能迅速重新跟踪动态轨迹航向角; 所提控制策略可以很好地跟踪控制实际交通环境下目标车道汽车在定车速、定加速度和变加速度工况下的智能汽车动态变道轨迹, 从而能实现智能汽车最优变道, 可确保变道过程中不与目标车道汽车发生碰撞, 并兼顾变道效率和乘员舒适性。   相似文献   

15.
为研究跨海桥梁所受风、浪、流环境荷载及其组合影响,采用国际结构安全性联合委员会(JCSS)提出的组合模型将风浪流荷载进行组合,并考虑了风浪流要素之间的相关性,对于风浪相关性采用了耿贝尔联合概率模型,并通过风海流实现了水流与风场的联合. 以某跨海大桥为工程背景,分析了不同荷载组合对主梁动力响应的影响及其机理,并讨论了荷载组合中参与荷载时段和不同波浪场对计算结果的影响. 研究结果表明:风、浪、流荷载对主梁位移响应影响较大,以风为主要荷载的JCSS组合比以波浪和水流为主要荷载的JCSS组合跨中位移响应偏大20%~30%;随机波浪和桥梁横向基阶模态对跨中横向响应贡献显著;主梁不同位置的位移响应受同一环境要素的影响程度不同,主跨跨中响应主要受风荷载的影响,塔梁结合处主梁响应主要受波浪荷载的影响;波浪场采用规则波模拟会低估主梁跨中位移响应.   相似文献   

16.
针对特殊地区地震作用下大跨度桥梁行车安全性问题,以某铁路某双层结合钢桁混合刚构桥为工程背景,建立了考虑材料非线性、切向摩擦与轮轨赫兹准确接触关系的列车-轨道-桥梁耦合振动分析模型,并基于ABAQUS-Python软件二次开发,实现了钢轨随机不平顺的施加;选取EL Centro地震波为输入波,分析了强震作用下双层结合钢桁混合刚构桥的损伤演化规律,计算了不同地震强度、不同车速下列车脱轨系数、轮重减载率、车体振动加速度等动力响应指标,分析了关键参数对地震作用下桥上行车安全性的影响规律,提出了该混合刚构桥基于行车安全性能的车速限值。研究结果表明:在罕遇地震作用(0.38g)下,桥梁各构件均出现不同程度的塑性损伤,桥墩破坏区域较大,震后桥梁仍具有一定的承载力;震时列车脱轨系数随地震强度增大而显著增大;车体最大振动加速度与地震强度近似呈线性增长;列车轮重减载率是控制行车安全的关键指标,其峰值与车速呈正相关;当车速为200 km·h-1,地震强度大于0.10g时,列车轮重减载率存在超限情况,列车在下桥时会出现长时间轮轨分离现象;从行车安全性的角度,在设计地震作用0.20g时,安全车速为160 km·h-1。   相似文献   

17.
为研究箱梁剪力滞效应和钢腹板剪切变形对波形钢腹板PC箱梁桥挠度的影响,基于能量变分法对该桥型的挠度计算进行了分析.首先,从箱梁翼板的面内剪切变形和弯曲剪力流的分布规律出发,在理论上推得可同时考虑箱梁剪力滞效应和钢腹板剪切变形的纵向位移函数;其次,以所得的纵向位移函数为基础,运用能量法推导出该桥型的挠度计算公式,并用模型试验及有限元法对公式的正确性进行了验证;最后,分析在箱梁宽跨比和钢腹板高度变化时,在不同荷载类型作用下,箱梁剪力滞效应和腹板剪切变形分别对波形钢腹板PC简支和连续箱梁桥挠度的影响.研究结果表明:当宽跨比为0.108~0.650时,在集中荷载作用下,剪力滞效应和钢腹板剪切变形对波形钢腹板PC连续箱梁桥的挠度影响较大,不可忽略;当宽跨比为0.108~0.650时,在均布荷载作用下,波形钢腹板PC简支和连续箱梁桥仅需考虑波形钢腹板剪切变形对其挠度的影响,只有在特定的宽跨比和特定的波形钢腹板截面高度下,才需要考虑剪力滞效应对其挠度的影响.   相似文献   

18.
斜风作用下桥塔施工阶段抖振性能   总被引:5,自引:0,他引:5  
为了研究不同风速、风偏角在施工阶段对桥塔抖振性能的影响,进行了考虑塔吊共同作用的桥塔联合气弹模型风洞试验。试验结果显示:桥塔的抖振位移响应可近似地表示为风速的二次函数,桥塔抖振响应随着风偏角的增加呈非单调变化,施工状态中桥塔顺桥向和横桥向抖振位移响应最大值会出现在非正交风作用下;在施工阶段设计风速下抖振位移响应最大值为0.2746m,在工程可接受范围内,试验得出的抖振位移响应均方根值显著大于抖振时域分析计算值,说明桥塔风洞试验应考虑施工状态和施工机械对其抖振性能的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号