首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, three innovative car-sharing systems for urban areas are proposed, based on fleets of individual intelligent vehicles with three service characteristics: instant access, open-ended reservations and one-way trips. These features provide high flexibility but create an uneven distribution of vehicles among stations. Therefore, relocation of vehicles must be performed. Three different system procedures are proposed: in the first system, relocations are performed by users; in the other two, vehicles relocate automatically, thanks to their automation. In the first two systems, vehicles are accessible only at stations, whereas in the third they are also accessible along roads. In order to provide transport managers with a tool to test systems in different realities, an object-oriented simulator is developed. The simulation provides outputs of system performance, in terms of user waiting times and system efficiency. The proposed systems are simulated for the city of Genoa, in Italy, and a comparative analysis is presented.  相似文献   

2.
Frequency setting takes place at the strategic and tactical planning stages of public transportation systems. The problem consists in determining the time interval between subsequent vehicles for a given set of lines, taking into account interests of users and operators. The result of this stage is considered as input at the operational level. In general, the problem faced by planners is how to distribute a given fleet of buses among a set of given lines. The corresponding decisions determine the frequency of each line, which impacts directly on the waiting time of the users and operator costs. In this work, we consider frequency setting as the problem of minimizing simultaneously users' total travel time and fleet size, which represents the interest of operators. There is a trade‐off between these two measures; therefore, we face a multi‐objective problem. We extend an existing single‐objective formulation to account explicitly for this trade‐off, and propose a Tabu Search solving method to handle efficiently this multi‐objective variant of the problem. The proposed methodology is then applied to a real medium‐sized problem instance, using data of Puerto Montt, Chile. We consider two data sets corresponding to morning‐peak and off‐peak periods. The results obtained show that the proposed methodology is able to improve the current solution in terms of total travel time and fleet size. In addition, the proposed method is able to efficiently suggest (in computational terms) different trade‐off solutions regarding the conflicting objectives of users and operators. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
The total cost minimizing approach to design transit systems is extended here beyond the usual dimensions of fleet (frequency) and vehicle size in order to examine the most appropriate spatial setting of transit lines as well. Motivated by the case of large cities in Latin America, characterized by high volumes of relatively long urban trips, we analyze the best ways to provide public transport services in a simplified urban setting represented by an extended cross-shaped network, where short trips (periphery–center) and long trips (periphery–periphery) coexist, generating economies of density. Three families of strategic lines structures are compared: mostly direct, feeder–trunk and hub and spoke. For each structure fleet and vehicle sizes are optimized, considering total (users’ and operators’) costs. The best structure is found parametrically in total passenger volume, the proportion of long trips and the value of the transfer penalty. The advantages of each dominating structure are explained in terms of factors like idle capacity, waiting or in-vehicle times and number of transfers.  相似文献   

4.
The operating cost of a demand responsive transit (DRT) system strictly depends on the quality of service that it offers to its users. An operating agency seeks to minimize operating costs while maintaining the quality of service while users experience costs associated with scheduling, waiting, and traveling within the system. In this paper, an analytical model is employed to approximate the agency's operating cost for running a DRT system with dynamic demand and the total generalized cost that users experience as a result of the operating decisions. The approach makes use of Vickrey's (1969) congestion theory to model the dynamics of the DRT system in the equilibrium condition and approximate the generalized cost for users when the operating capacity is inadequate to serve the time-dependent demand over the peak period without excess delay. The efficiency of the DRT system can be improved by optimizing one of three parameters that define the agency's operating decision: (1) the operating capacity of the system, (2) the number of passengers that have requested a pick-up and are awaiting service, and (3) the distribution of requested times for service from the DRT system. A schedule management strategy and dynamic pricing strategies are presented that can be implemented to manage demand and reduce the total cost of the DRT system by keeping the number of waiting requests optimized over the peak period. In the end, proposed optimization strategies are compared using a numerical example.  相似文献   

5.
This paper proposes a Continuum Approximation (CA) model for design of a one-way Electrical Vehicle (EV) sharing system that serves a metropolitan area. This model determines the optimal EV sharing station locations and the corresponding EV fleet sizes to minimize the comprehensive system cost, including station construction investment, vehicle charging, transportation and vehicle balancing, under stochastic and dynamic trip demands. This is a very complex problem due to the NP-hard nature of location design, the large number of individual users, and the stochasticity and dynamics of generated trips. Further, the considerable charging time required by EVs distinguishes this problem from traditional car sharing problems where a vehicle is immediately available for pickup after being dropped at a station. We find that the CA approach can overcome these modeling challenges by decomposing the studied area into a number of small neighborhoods that each can be approximated by an Infinite Homogeneous Plane (IHP). We find that the system cost of an IHP is a unimodal function of the station service area size and can be efficiently solved in a sub-linear time by the bisection algorithm. Then integrating the solutions of all IHPs yields an approximate solution to the original heterogeneous area. With numerical experiments, we show that the CA solution is able to estimate the total system cost of the discrete counterpart solution efficiently with good accuracy, even for large-scale heterogeneous problems. This implies that the proposed CA approach is capable of providing a near-optimum solution to the comprehensive design of a practical large-scale EV sharing system. With this model, we also conduct sensitivity analysis to reveal insights into how cost components and system design vary with key parameter values. As far as the author’s knowledge, this study is the first work that addresses design of an EV sharing system considering both longer-term location and fleet size planning and daily vehicle operations. The proposed CA model also extends the CA methodology literature from traditional location problems with stationary demand, single-facility based service to EV sharing problems considering dynamic demands, OD trips, and nonlinear vehicle charging times.  相似文献   

6.
A queue-dependent vehicle dispatching rule, with options to use special vehicles (rented, reserve, shared etc.) for relieving long waiting lines, is considered. The transportation system under consideration has one source terminal and a fleet of N regular vehicles. Passengers are assumed to arrive individually at the source terminal according to a Poisson process. An efficient recursive algorithm is derived to analyse the performance of the system. An average cost criterion is used to determine the firm's fleet size and dispatching strategy for a simpler system. This is a variant of a “Random vehicle dispatching with options” rule proposed by Zuckerman and Tapiero (1980).  相似文献   

7.
Waiting time at public transport stops is perceived by passengers to be more onerous than in-vehicle time, hence it strongly influences the attractiveness and use of public transport. Transport models traditionally assume that average waiting times are half the service headway by assuming random passenger arrivals. However, research agree that two distinct passenger behaviour types exist: one group arrives randomly, whereas another group actively tries to minimise their waiting time by arriving in a timely manner at the scheduled departure time. This study proposes a general framework for estimating passenger waiting times which incorporates the arrival patterns of these two groups explicitly, namely by using a mixture distribution consisting of a uniform and a beta distribution. The framework is empirically validated using a large-scale automatic fare collection system from the Greater Copenhagen Area covering metro, suburban, and regional rail stations thereby giving a range of service headways from 2 to 60 min. It was shown that the proposed mixture distribution is superior to other distributions proposed in the literature. This can improve waiting time estimations in public transport models. The results show that even at 5-min headways 43% of passengers arrive in a timely manner to stations when timetables are available. The results bear important policy implications in terms of providing actual timetables, even at high service frequencies, in order for passengers to be able to minimise their waiting times.  相似文献   

8.
Conventional fixed-route bus services are generally preferred to flexible-route services at high demand densities, and vice versa. This paper formulates the problem of integrating conventional and flexible services that connect a main terminal to multiple local regions over multiple time periods. The system’s vehicle size, route spacing (for conventional services), service area (for flexible services), headways and fleet sizes are jointly optimized to minimize the sum of supplier costs and user costs. The route spacing for conventional bus services and service area for flexible bus services are also optimized for each region. The proposed solution method, which uses a genetic algorithm and analytic optimization, finds good solutions quickly. Numerical examples and sensitivity analyses confirm that the single fleet variable-type bus service may outperform either the single fleet conventional bus service or the single fleet flexible bus service when demand densities vary substantially among regions and time periods.  相似文献   

9.
This paper proposes a state-augmented shipping (SAS) network framework to integrate various activities in liner container shipping chain, including container loading/unloading, transshipment, dwelling at visited ports, in-transit waiting and in-sea transport process. Based on the SAS network framework, we develop a chance-constrained optimization model for a joint cargo assignment problem. The model attempts to maximize the carrier’s profit by simultaneously determining optimal ship fleet capacity setting, ship route schedules and cargo allocation scheme. With a few disparities from previous studies, we take into account two differentiated container demands: deterministic contracted basis demand received from large manufacturers and uncertain spot demand collected from the spot market. The economies of scale of ship size are incorporated to examine the scaling effect of ship capacity setting in the cargo assignment problem. Meanwhile, the schedule coordination strategy is introduced to measure the in-transit waiting time and resultant storage cost. Through two numerical studies, it is demonstrated that the proposed chance-constrained joint optimization model can characterize the impact of carrier’s risk preference on decisions of the container cargo assignment. Moreover, considering the scaling effect of large ships can alleviate the concern of cargo overload rejection and consequently help carriers make more promising ship deployment schemes.  相似文献   

10.
In certain fleet systems, the environmental impacts of operation are, to some extent, a controllable function of vehicle routing and scheduling decisions. However, little prior work has considered environmental impacts in fleet vehicle routing and scheduling optimization, in particular, where the impacts were assessed systematically utilizing life-cycle impact assessment methodologies such as those described by the Society of Environmental Chemistry and Toxicology. Here a methodology is presented for the joint optimization of cost, service, and life-cycle environmental consequences in vehicle routing and scheduling, which we develop for a demand-responsive (paratransit or dial-a-ride) transit system. We demonstrate through simulation that, as a result of our methodology, it is possible to reduce environmental impacts substantially, while increasing operating costs and service delays only slightly.  相似文献   

11.
This paper presents a novel Adaptive Memory Programming (AMP) solution approach for the Fleet Size and Mix Vehicle Routing Problem with Time Windows (FSMVRPTW). The FSMVRPTW seeks to design a set of depot returning vehicle routes to service a set of customers with known demands, for a heterogeneous fleet of vehicles with different capacities and fixed costs. Each customer is serviced only once by exactly one vehicle, within fixed time intervals that represent the earliest and latest times during the day that service can take place. The objective is to minimize the total transportation costs, or similarly to determine the optimal fleet composition and dimension following least cost vehicle routes. The proposed method utilizes the basic concept of an AMP solution framework equipped with a probabilistic semi-parallel construction heuristic, a novel solution re-construction mechanism, an innovative Iterated Tabu Search algorithm tuned for intensification local search and frequency-based long term memory structures. Computational experiments on well-known benchmark data sets illustrate the efficiency and effectiveness of the proposed method. Compared to the current state-of-the-art, the proposed method improves the best reported cumulative and mean results over most problem instances with reasonable computational requirements.  相似文献   

12.
A fleet of vessels and helicopters is needed to support maintenance operations at offshore wind farms. The cost of this fleet constitutes a major part of the total maintenance costs, hence keeping an optimal or near-optimal fleet is essential to reduce the cost of energy. In this paper we study the vessel fleet size and mix problem that arises for the maintenance operations at offshore wind farms, and propose a stochastic three-stage programming model. The stochastic model considers uncertainty in vessel spot rates, weather conditions, electricity prices and failures to the system. The model is tested on realistic-sized problem instances, and the results show that it is valuable to consider uncertainty and that the proposed model can be used to solve instances of a realistic size.  相似文献   

13.
Dial-a-ride services provide disabled and elderly people with a personalized mode of transportation to preserve their mobility. Typically, several users with different pickup and dropoff locations are transported on a vehicle simultaneously. The focus in dial-a-ride problems (DARPs) is mainly on minimizing routing cost. Service quality has been taken into account in the models by imposing time windows and limiting the maximum ride time of each user. We extend the classical DARP by an additional feature of service quality referred to as driver consistency. Customers of dial-a-ride services are often sensitive to changes in their daily routine. This aspect includes the person who is providing the transportation service, i.e., the driver of the vehicle. Our problem, called the driver consistent dial-a-ride problem (DC-DARP), considers driver consistency by bounding the maximum number of different drivers that transport a user over a multi-period planning horizon.We propose different formulations of the problem and examine their efficiency when applied in a Branch-and-Cut fashion. Additionally, we develop a large neighborhood search algorithm that generates near-optimal solutions in a short amount of time.Over 1000 instances are generated with close reference to real world scenarios. Extensive computational experiments are conducted in order to assess the quality of the solution approaches and to provide insights into the new problem. Results reveal that the cost of offering driver consistency varies greatly in magnitude. Depending on the instance, the cost of assigning one driver to each user can be up to 27.98% higher compared to a low-cost solution. However, routing cost increases by not more than 5.80% if users are transported by at least two drivers.  相似文献   

14.
Vosooghi  Reza  Kamel  Joseph  Puchinger  Jakob  Leblond  Vincent  Jankovic  Marija 《Transportation》2019,46(6):1997-2015

The first commercial fleets of Robo-Taxis will be on the road soon. Today important efforts are made to anticipate future Robo-Taxi services. Fleet size is one of the key parameters considered in the planning phase of service design and configuration. Based on multi-agent approaches, the fleet size can be explored using dynamic demand response simulations. Time and cost are the most common variables considered in such simulation approaches. However, personal taste variation can affect the demand and consequently the required fleet size. In this paper, we explore the impact of user trust and willingness-to-use on the Robo-Taxi fleet size. This research is based upon simulating the transportation system of the Rouen-Normandie metropolitan area in France using MATSim, a multi-agent activity-based simulator. A local survey is made in order to explore the variation of user trust and their willingness-to-use future Robo-Taxis according to the sociodemographic attributes. Integrating survey data in the model shows the significant importance of traveler trust and willingness-to-use varying the Robo-Taxi use and the required fleet size.

  相似文献   

15.
This paper presents a methodology for modelling an urban transport system, integrating public bicycles in a multi-modal network. A bike cost function that reproduces the effect of slopes on cycling speeds is proposed. Also, the effect of traffic levels on the attractiveness of cycling routes is taken into account. The model applies the modal split and network assignment phases in a multimodal network with different classes of users. It has been verified over a test network and then validated by applying it to a real case in the city of Santander in Spain. The results obtained make this model a useful decision-making tool to encourage the use of the public bicycle from a sustainable development point of view.  相似文献   

16.
This paper examines the design and efficiency of a highway use reservation system where commuters need reservations to access a highway facility at specific times. We show that, by accommodating reservation requests to the level that the highway capacity allows, traffic congestion can be relieved. Generally, a more differentiated design of the reservation system yields a higher reduction of travel cost and thus achieves a higher efficiency. The efficiency bound of the system is established. We also show that braking or tactical waiting behaviors of drivers would cause a loss of efficiency, which thus need be proactively accommodated. Given that user heterogeneity cause further loss of efficiency, we explore how two specific types of user heterogeneity affect the system efficiency. Auction-based reservation is then proposed to mitigate the efficiency loss.  相似文献   

17.
Abstract

This paper concerns the newspaper distribution problem. It addresses the transportation of newspapers from printing plant to newsagents with distribution vehicles under various particular constraints. The objective is to minimize the distance traveled by the vehicles and/or the number of vehicles. In this study, the routes for vehicles of a leading newspaper distributor company in the Turkish press sector are examined. The problem is defined as determining optimal delivery routes for a fleet of homogeneous vehicles, starting and ending at the printing plant that is required to serve a number of geographically dispersed newsagents with known demands under capacity and time constraints, while minimizing the total distribution cost. An integar linear programming model is proposed as a solution using Cplex. Computational results demonstrate that the proposed model is fast and able to find optimal solutions for problem scenarios with up to 55 newsagents within reasonable computing times. It was found that the proposed model reduced the delivery cost by 21% on average when compared to the current manual method. The results show that this model is adequate for medium-sized distribution problems.  相似文献   

18.
As an alternative transportation paradigm, shared vehicle systems have become increasingly popular in recent years. Shared vehicle systems typically consist of a fleet of vehicles that are used several times each day by different users. One of the main advantages of shared vehicle systems is that they reduce the number of vehicles required to meet total travel demand. An added energy/emissions benefit comes when low-polluting (e.g., electric) vehicles are used in the system. In order to evaluate operational issues such as vehicle availability, vehicle distribution, and energy management, a unique shared vehicle system computer simulation model has been developed. As an initial case study, the model was applied to a resort community in Southern California. The simulation model has a number of input parameters that allow for the evaluation of numerous scenarios. Several measures of effectiveness have been determined and are calculated to characterize the overall system performance. For the case study, it was found that the most effective number of vehicles (in terms of satisfying customer wait time) is in the range of 3–6 vehicles per 100 trips in a 24 h day. On the other hand, if the number of relocations also is to be minimized, there should be approximately 18–24 vehicles per 100 trips. Various inputs to the model were varied to see the overall system response. The model shows that the shared vehicle system is most sensitive to the vehicle-to-trip ratio, the relocation algorithm used, and the charging scheme employed when electric vehicles are used. A preliminary cost analysis was also performed, showing that such a system can be very competitive with present transportation systems (e.g., rental cars, taxies, etc.).  相似文献   

19.
Motivated by the growth of ridesourcing services and the expected advent of fully-autonomous vehicles (AVs), this paper defines, models, and compares assignment strategies for a shared-use AV mobility service (SAMS). Specifically, the paper presents the on-demand SAMS with no shared rides, defined as a fleet of AVs, controlled by a central operator, that provides direct origin-to-destination service to travelers who request rides via a mobile application and expect to be picked up within a few minutes. The underlying operational problem associated with the on-demand SAMS with no shared rides is a sequential (i.e. dynamic or time-dependent) stochastic control problem. The AV fleet operator must assign AVs to open traveler requests in real-time as traveler requests enter the system dynamically and stochastically. As there is likely no optimal policy for this sequential stochastic control problem, this paper presents and compares six AV-traveler assignment strategies (i.e. control policies). An agent-based simulation tool is employed to model the dynamic system of AVs, travelers, and the intelligent SAMS fleet operator, as well as, to compare assignment strategies across various scenarios. The results show that optimization-based AV-traveler assignment strategies, strategies that allow en-route pickup AVs to be diverted to new traveler requests, and strategies that incorporate en-route drop-off AVs in the assignment problem, reduce fleet miles and decrease traveler wait times. The more-sophisticated AV-traveler assignment strategies significantly improve operational efficiency when fleet utilization is high (e.g. during the morning or evening peak); conversely, when fleet utilization is low, simply assigning traveler requests sequentially to the nearest idle AV is comparable to more-advanced strategies. Simulation results also indicate that the spatial distribution of traveler requests significantly impacts the empty fleet miles generated by the on-demand SAMS.  相似文献   

20.
This paper investigates an issue for optimizing synchronized timetable for community shuttles linked with metro service. Considering a passenger arrival distribution, the problem is formulated to optimize timetables for multiple community shuttle routes, with the objective of minimizing passenger’s schedule delay cost and transfer cost. Two constraints, i.e., vehicle capacity and fleet size, are modeled in this paper. The first constraint is treated as soft, and the latter one is handled by a proposed timetable generating method. Two algorithms are employed to solve the problem, i.e., a genetic algorithm (GA) and a Frank–Wolfe algorithm combined with a heuristic algorithm of shifting departure times (FW-SDT). FW-SDT is an algorithm specially designed for this problem. The simulated and real-life examples confirm the feasibility of the two algorithms, and demonstrate that FW-SDT outperforms GA in both accuracy and effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号