首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Phytoplankton, bacteria and microzooplankton were investigated on a transect in the Bellingshausen Sea during the ice melt period in November–December 1992. The transect along the 85°W meridian comprised seven stations that progressed from solid pack-ice (70°S), through melting ice into open water (67°S). The abundance, biomass and taxonomic composition were determined for each component of the microbial community. The phytoplankton was mostly dominated by diatoms, particularly small (<20 μm) species. Diatom abundance ranged from 66 000 cells l−1 under the ice to 410 000 cells l−1 in open water. Phytoplankton biomass varied from <1 to 167 mg C m−3, with diatoms comprising 89–95% of the total biomass in open water and autotrophic nanoflagellates comprising 57% under the ice. The standing stocks of autotrophs in the mixed layer ranged from 95 mg C m−2 under the pack-ice to 9478 mg C m−2 in open waters. Bacterial abundance in ice-covered and open water stations varied from 1.1 to 5.5×108 cells l−1. Bacterial biomass ranged from 2.4 mg C m−3 under pack-ice to an average of 14 mg C m−3 in open water. The microzooplankton consisted mainly of aloricate oligotrich ciliates and heterotrophic dinoflagellates and these were most abundant in open waters. Their biomass varied between 0.2 and 54 mg C m−3 with a minimum at depth under the ice and maximum in open surface waters. Microheterotrophic standing stocks varied between 396 mg C m−2 under pack-ice and 3677 mg C m−2 in the open waters. The standing stocks of the total microbial community increased consistently from 491 mg C m−2 at the ice station to 13 155 mg C m−2 in open waters, reflecting the productive response of the community to ice-melt. The composition of the microbial community also shifted markedly from one dominated by heterotrophs (82% of microbial stocks) at the ice station to one dominated by autotrophs (73% of microbial stocks) in the open water. Our estimates suggest that the microbial community comprised >100% of the total particulate organic carbon (POC) under the ice and 62–66% of the measured POC in the open waters.  相似文献   

2.
The North Aegean Sea constitutes an important region of the Mediterranean Sea since in its eastern part the mesotrophic, low salinity and relatively cold water from the Black Sea (outflowing from the Dardanelles strait) meets the oligotrophic, warm and very saline water of Levantine origin, thus forming a thermohaline front. Mesozooplankton samples were collected at discrete layers according to the hydrology of the upper 100 m, during May 1997 and September 1998. In May highest biomass and abundance values (up to 66.82 mg m− 3 and 14,157 ind m− 3) were detected in the 10–20 m layer (within the halocline) of the stations positioned close to the Dardanelles strait. The front moved slightly southwards in September, characterized by high biomass and abundance values within the halocline layer. The areas moderately or non influenced by Black Sea water revealed lower standing stock values than the frontal area in both cruises and maxima were detected in the uppermost low salinity layer. Samples collected at the stations and/or layers more influenced by Black Sea water were distinguished from those collected at layers and/or stations more affected by Levantine waters in both periods. In May the former samples were characterized by the copepods Acartia clausi, Centropages typicus, Paracalanus parvus. The abundance of the above species decreased gradually with increasing salinity, in the horizontal and/or in the vertical dimension, with a parallel increase of the copepods Oithona plumifera, Oithona copepodites, Oncaea media, Ctenocalanus vanus, Farranula rostrata. During September the frontal area as well as that covered by the modified Black Sea water, were highly dominated by the cladoceran Penilia avirostris and doliolids. For both seasons, MDS plots, issued from the combination of mesozooplankton and water-type data, revealed the gradual differentiation of zooplankton composition from the frontal area towards the area covered by Levantine water, following the spreading and mixing of the Black sea water. The observed temporal and spatial variability in the distribution pattern of mesozooplankton standing stock and species composition seems to depend considerably on the variability of circulation and frontal flows.  相似文献   

3.
Copepods were sampled by a multiple opening-closing net in the eastern Weddell Sea during various seasons (late winter/early spring, summer, autumn). Total copepod biomass integrated over the upper 1000 m varied seasonally between 1.7 mg C m−3 in late winter/early spring and 3.7 mg C m−3 in autumn. After the dark season the copepods were rather evenly distributed vertically and highest biomass levels were found in the mid-water layers between about 200 m and 500 m. By contrast, especially in summer but also in autumn copepod biomass concentrated in the uppermost water layer. A total of 64 calanoid species were identified in the upper 1000 m with maximum species numbers in the deepest layer. The large calanoids Calanus propinquus, Calanoides acutus, Metridia gerlachei, Euchaeta antarctica and the small calanoid Microcalanus pygmaeus prevailed and accounted for 60–70% of total copepod biomass, while the small poecilostomatoid Oncaea and the cyclopoid Oithona species comprised about 20%. Hence, the distribution pattern of the entire copepod biomass is strongly influenced by the life cycles of a few dominant species.  相似文献   

4.
A Pacific basin-wide physical–biogeochemical model has been used to investigate the seasonal and interannual variation of physical and biological fields with analyses focusing on the Sea of Japan/East Sea (JES). The physical model is based on the Regional Ocean Model System (ROMS), and the biogeochemical model is based on the Carbon, Si(OH)4, Nitrogen Ecosystem (CoSiNE) model. The coupled ROMS–CoSiNE model is forced with the daily air–sea fluxes derived from the National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) reanalysis for the period of 1994 to 2001, and the model results are used to evaluate climate impact on nutrient transport in Mixed Layer Depth (MLD) and phytoplankton spring bloom dynamics in the JES.The model reproduces several key features of sea surface temperature (SST) and surface currents, which are consistent with the previous modeling and observational results in the JES. The calculated volume transports through the three major straits show that the Korea Strait (KS) dominates the inflow to the JES with 2.46 Sv annually, and the Tsugaru Strait (TS) and the Soya Strait (SS) are major outflows with 1.85 Sv and 0.64 Sv, respectively. Domain-averaged phytoplankton biomass in the JES reaches its spring peak 1.8 mmol N m− 3 in May and shows a relatively weak autumn increase in November. Strong summer stratification and intense consumption of nitrate by phytoplankton during the spring result in very low nitrate concentration at the upper layer, which limits phytoplankton growth in the JES during the summer. On the other hand, the higher grazer abundance likely contributes to the strong suppression of phytoplankton biomass after the spring bloom in the JES. The model results show strong interannual variability of SST, nutrients, and phytoplankton biomass with sudden changes in 1998, which correspond to large-scale changes of the Pacific Decadal Oscillation (PDO). Regional comparisons of interannual variations in springtime were made for the southern and northern JES. Variations of nutrients and phytoplankton biomass related to the PDO warm/cold phase changes were detected in both the southern and northern JES, and there were regional differences with respect to the mechanisms and timing. During the warm PDO, the nutrients integrated in the MLD increased in the south and decreased in the north in winter. Conversely, during the cold PDO, the nutrients integrated in the MLD decreased in the south and increased in the north. Wind divergence/convergence likely drives the differences in the southern and northern regions when northerly and northwesterly monsoon dominates in winter in the JES. Subjected to the nutrient change, the growth of phytoplankton biomass appears to be limited neither by nutrient nor by light consistently both in the southern and northern regions. Namely, the JES is at the transition zone of the lower trophic-level ecosystem between light-limited and nutrient-limited zones.  相似文献   

5.
100-years-changes in the phytoplankton community of Kiel Bight (Baltic Sea)   总被引:1,自引:0,他引:1  
Literature data from 1905/06, 1912/13 and 1949/50 were compared with recent data (2001–2003) from Kiel Bight in order to investigate changes in phytoplankton composition and biomass, which may serve as indicators of environmental changes. In terms of biomass, diatomophyceae and dinophyceae are by far the most important groups. Their ratio is still close to unity. The share of diatomophyceae increased strongly in years with exceptionally high summer blooms (2001) or exceptionally early spring blooms (2003). The summer and autumn blooms of Chaetoceros and Skeletonema, detected in the early 20th century, are replaced by other diatoms (Cerataulina pelagica, Dactyliosolen fragilissimus, Proboscia alata, Pseudo-nitzschia spp.). Chaetoceros and Skeletonema are still important components of the spring blooms. Now as before, the autumn blooms are dominated by Ceratium spp., sometimes also by diatoms. Newly appearing bloom-forming species are mostly potentially toxic (Dictyocha speculum, Prorocentrum minimum, Pseudo-nitzschia spp.). The total phytoplankton biomass has roughly doubled in the course of the last century. The reference condition for phytoplankton biomass in Kiel Bight in the sense of the Water Framework Directive was defined at 55 mg C m− 3 (± 10%, annual mean). The mean annual biomass of diatomophyceae and dinophyceae was 25 mg C m− 3 (± 40%) for each, indicating that the sum of their carbon biomass amounted to 90% (± 10%) of the total phytoplankton biomass on an annual average. Diatomophyceae represented at least 80% of carbon biomass in the spring bloom peak at the beginning of the 20th century.  相似文献   

6.
Seasonal changes in the abundance and biomass of cyanobacteria (Synechococcus and Prochlorococcus) and picoeukaryotes were studied by flow cytometry in the upper layers of the central Cantabrian Sea continental shelf, from April 2002 to April 2006. The study area displayed the typical hydrographic conditions of temperate coastal zones. A marked seasonality of the relative contribution of prokaryotes and eukaryotes was found. While cyanobacteria were generally more abundant for most of the year (up to 2.4 105 cells mL− 1), picoeukaryotes dominated the community (up to 104 cells mL− 1) from February to May. The disappearance of Prochlorococcus from spring through summer is likely related to shifts in the prevailing current regime. The maximum total abundance of picophytoplankton was consistently found in late summer–early autumn. Mean photic-layer picoplanktonic chlorophyll a ranged from 0.06 to 0.53 µg L− 1 with a relatively high mean contribution to total values (33 ± 2% SE), showing maxima around autumn and minima in spring. Biomass (range 0.58–40.16 mg C m− 3) was generally dominated by picoeukaryotes (mean ± SE, 4.28 ± 0.27 mg C m− 3) with an average contribution of cyanobacteria of 30 ± 2%. Different seasonality of pigment and biomass values resulted in a clear temporal pattern of picophytoplanktonic carbon to chlorophyll a ratio, which ranged from 10 (winter) to 140 (summer). This study highlights the important contribution of picoplanktonic chlorophyll a and carbon biomass in this coastal ecosystem.  相似文献   

7.
The results of a study on the spatial and temporal dynamics of size-fractionated biomass and production of phytoplankton in the Ross Sea during the austral spring and summer are reported. The spring cruise took place in the offshore Ross Sea from 14 November to 14 December 1994. Sampling was carried out on a transect of 27 stations distributed from 76.5 to 72.0°S along 175°E, and covered the three main Antarctic environments of the polynya open waters, the marginal ice zone and the pack ice area. Three subsystems were identified. The subsystem of the polynya was characterised by the predominance of the micro- and nano-planktonic fractions, chlorophyll (Chl a) concentrations from 69.6 to 164.7 mg m−2 and production rates from 0.68 to 1.14 g C m−2 day−1. The second subsystem, the marginal ice zone, showed a relative increase of the micro-planktonic fraction, high biomass levels (from 99.64 to 220 mg Chl m−2) and production rates from 0.99 to 2.7 g C m−2 day−1. The subsystem of the pack ice area had a phytoplankton community dominated by the pico-planktonic fraction and showed low biomasses (from 19.4 to 37.7 mg Chl m−2) and production rates (0.28 to 0.60 g C m−2 day−1). Selective grazing by krill is considered an important factor in determining the size structure of the phytoplankton communities. The summer study consisted of a time series carried out in inshore waters of Terra Nova Bay from 12 January to 8 February 1990. In a well stabilised water column and with high levels of PAR always available, the primary production rates of a community dominated by micro-plankton varied from 0.52 to 1.2 g C m−2 day−1 (average 0.84). A high P/B ratio, up to 3, and a remarkably elevated mean phaeopigment (Phaeo)/Chl a ratio of 2.4 indicated an active removal of biomass by grazing, confirmed by the presence of faecal pellets in quantities reaching 6000 m−3 in the upper 50 m. The peculiarities of the inshore versus offshore environments in terms of community size structure, production processes and their implications as regards the food web are discussed.  相似文献   

8.
The results on the distribution of phytoplankton biomass (expressed as Chla) and primary production (14C assimilation), during three oceanographic cruises carried out during Austral spring and at the end of the summer and the autumn in the Straits of Magellan, suggest a strong variability of trophic levels for this ecosystem.Seasonal evolution of the biomass concentration goes from the spring maximum of 2.33 μg/l through a sharp decrease, 0.49 μg/l, observed at the end of summer, until the minimum of 0.24 μg/l measured during the autumn.The trophic conditions are dependent on hydrographic, meteo-climatic and geo-morphological characteristics: at the Atlantic entrance and between the two Angosturas the strong mixing of water column limit the development of phytoplankton; at the Western opening and along the Pacific arm the complex exchange mechanisms with the ocean, the glacio-fluvial contribution and the presence of a thermohaline front near the Isla Carlos III influence both biomass and primary production distributions. The maximum values are reached in the Central Zone (Paso Ancho) characterized by high stability of the water column.Primary production ranged from a minimum of 12.3 to a maximum of 125.9 mgC m−2 h−1. The overall trend seems to be a progressive and simultaneous increase from the Pacific and Atlantic openings to the Central Zone of Paso Ancho where the maximum value was reached. In general, biomass and primary production distributions correspond quite well except for the area of Isla Carlos III where biological and chemico-physical causes tend to limit 14C assimilation.Contribution of pico-phytoplankton (< 2 μm) to total biomass appears to be time dependent: in the blooms observed during spring a very modest incidence (< 6%) was observed whereas became more (> 50%) during the summer-autumn seasons when total biomass was decreasing.Within the Straits, at the end of summer, the contribution of pico-phytoplankton primary production is 59%, whereas nano and microplankton contribute 39% and 2%, respectively. At the oceanic external stations the photosynthetic activity of the bigger size-fraction (> 2 μm) is predominant (> 50%).These findings support the hypothesis that the pico-phytoplankton ( < 2 μm) is substantially constant, whereas temporal variations are due to the larger (> 10 μm) cells only.  相似文献   

9.
Depth profiles of heterotrophic bacteria abundance were measured weekly over a 6-month period from December to May in Franklin Bay, a 230 m-deep coastal Arctic Ocean site of the southeastern Beaufort Sea. Total bacteria, low nucleic acid (LNA) and high nucleic acid (HNA) bacteria abundances were measured using flow cytometry after SYBR Green I staining. The HNA bacteria abundance in surface waters started to increase 5–6 weeks after phytoplankton growth resumed in spring, increasing from 1 × 105 to 3 × 105 cells mL− 1 over an 8-week period, with a net growth rate of 0.018 d− 1. LNA bacteria response was delayed by more than two months relative to the beginning of the phytoplankton biomass accumulation and had a lower net growth rate of 0.013 d− 1. The marked increase in bacterial abundance occurred before any significant increase in organic matter input from river discharge (as indicated by the unchanged surface water salinity and DOC concentrations), and in the absence of water temperature increase. The abundance of bacteria below the halocline was relatively high until January (up to 5 × 105 cells mL− 1) but then decreased to values close to 2 × 105 cells mL− 1. The three-fold bacterial abundance increase observed in surface waters in spring was mostly due to HNA bacteria, supporting the idea that these cells are the most active.  相似文献   

10.
We measured the abundance and biomass of phototrophic and heterotrophic microbes in the upper mixed layer of the water column in ice-covered Franklin Bay, Beaufort Sea, Canada, from December 2003 to May 2004, and evaluated the influence of light and nutrients on these communities by way of a shipboard enrichment experiment. Bacterial cell concentrations showed no consistent trends throughout the sampling period, averaging (± SD) 2.4 (0.9) × 108 cells L− 1; integrated bacterial biomass for the upper mixed layer ranged from 1.33 mg C m− 3 to 3.60 mg C m− 3. Small cells numerically dominated the heterotrophic protist community in both winter and spring, but in terms of biomass, protists with a diameter > 10 µm generally dominated the standing stocks. Heterotrophic protist biomass integrated over the upper mixed layer ranged from 1.23 mg C m− 3 to 6.56 mg C m− 3. Phytoplankton biomass was low and variable, but persisted during the winter period. The standing stock of pigment-containing protists ranged from a minimum value of 0.38 mg C m− 3 in winter to a maximal value of 6.09 mg C m− 3 in spring and the most abundant taxa were Micromonas-like cells. These picoprasinophytes began to increase under the ice in February and their population size was positively correlated with surface irradiance. Despite the continuing presence of sea ice, phytoplankton biomass rose by more than an order of magnitude in the upper mixed layer by May. The shipboard experiment in April showed that this phototrophic increase in the community was not responsive to pulsed nutrient enrichment, with all treatments showing a strong growth response to improved irradiance conditions. Molecular (DGGE) and microscopic analyses indicated that most components of the eukaryotic community responded positively to the light treatment. These results show the persistence of a phototrophic inoculum throughout winter darkness, and the strong seasonal response by arctic microbial food webs to sub-ice irradiance in early spring.  相似文献   

11.
During a repeat grid survey and drogue study carried out in austral summer 1994/95, the abundance and feeding activity of salps were estimated in the Lazarev Sea region from net tows and in situ measurements of gut fluorescence. Throughout the survey area, Salpa thompsoni accounted for >95% of the total salp stock while Ihlea racovitzai was consistently represented in very low abundances. Maximum densities of S. thompsoni, with ≈4000 ind. 1000 m−3, were recorded in the Marginal Ice Zone (MIZ) in December when chlorophyll-a concentrations were well below 1 mg m−3. A dramatic decrease in salp stock was observed at the beginning of January, when S. thompsoni virtually disappeared from the most productive area of the MIZ where chlorophyll-a concentrations had by then reached bloom levels of 1.5–3 mg (Chl-a) m−3. In situ grazing measurements showed that throughout the cruise S. thompsoni exhibited the highest ingestion rates per individual of any of the most abundant components of the grazing pelagic community, with maxima of ≈160 μg (pigm) ind. −1 d−1. These feeding rates are 3 to 5 times higher than those previously obtained using in vitro incubations. The total daily consumption of the population of S. thompsoni varied from 0.3 to 108% of daily primary production. We suggest that competitive removal of food by S. thompsoni, rather than direct predation, is responsible for the low krill abundances generally associated with salp swarms.  相似文献   

12.
Production of the marine calanoid copepod Acartia omorii was measured from 2 October 1991 to 8 October 1992 at a station in Ilkwang Bay on the southeastern coast of Korea. A. omorii (nauplii + copepodites + adults) were present in the plankton throughout the year, with seasonal variation in abundance. Biomass of A. omorii was averaged at 0.44 mgC m− 3, with peaks in February and July, and relatively low biomass in late summer and fall. Egg production rate ranged from 2.4 to 151.9 μgC m− 3 day− 1, which was equivalent to 95–6075 eggs m− 3 day− 1. Fecundity of an adult female was averaged at 38 eggs female− 1 day− 1. Instantaneous growth rates of copepodites were higher than those of nauplii stages. Annual production of A. omorii ranged from 33.5 mgC m− 3 year− 1 to 221 mgC m− 2 year− 1, showing a seasonal variation of daily production rate with peaks in February and July. The daily production rate of A. omorii was significantly correlated with chlorophyll a concentration. These results suggest that standing stocks and/or productivity of phytoplankton are the major influencing factors, rather than water temperature for the seasonal variation of production of A. omorii in Ilkwang Bay.  相似文献   

13.
The changes in the environmental features of the Yellow Sea during the last 25 years of the 20th century were studied using a set of seasonally monitored data along a transect (at 36°N) maintained by the State Oceanic Administration of China. The data included the ocean temperature (T), salinity (S) and biogenic elements, such as dissolved oxygen (DO), phosphorus (PO4-P), silicon (SiO3-Si) and dissolved inorganic nitrogen (DIN).The seasonal (summer and winter) values and the annual mean of these elements showed significant changes during the monitored period. Time series of T, S, DIN and N:P ratios exhibited positive trends, while those of DO, P and Si exhibited negative trends. During this period, the annual mean of T and DIN in the Yellow Sea increased by 1.7 °C and 2.95 μmol L−1, respectively, while those of DO, P and Si decreased by 59.1, 0.1 and 3.93 μmol L−1, respectively. In the 1980s, particularly in between 1985 and 1989, concentrations of P and Si dropped to near the ecological threshold for growth of diatoms. The N:P ratio increased from 4 in 1984 to over 16 in 2000. The climate trend coefficients, Rxt, for these time series are all above 0.43 with significance levels of 95%, except for salinity. The increases in T were consistent with the recent climate warming in northern China and the adjacent seas, i.e. the Bohai Sea and the East China Sea. The reduction of DO was probably attributable to the increase in T and decrease in primary production in these regions. The positive trend of DIN was mainly attributable to precipitation and partly to Changjiang River discharge. The negative concentration trends of P and Si were due to the decreases in their concentrations in seawater that flowed to the Yellow Sea from the Bohai Sea. As a result, N:P ratios greatly increased in the seawater of the Yellow Sea.Moreover, some important responses of the Yellow Sea ecosystems to the changes in physical variables and chemical biogenic elements were obviously displayed. These responses include strengthening nutrient limitation, decreasing chlorophyll a, primary production and phytoplankton abundance, succession of dominant phytoplankton species from diatoms to non-diatoms, changes in fish community structure and species diversity.  相似文献   

14.
As part of the Canadian Arctic Shelf Exchange Study (CASES), we investigated the spatial and seasonal distributions of viruses in relation to biotic (bacteria, chlorophyll-a (chl a)) and abiotic variables (temperature, salinity and depth). Sampling occurred in the southern Beaufort Sea Shelf in the region of the Amundsen Gulf and Mackenzie Shelf, between November 2003 and August 2004. Bacterial and viral abundances estimated by epifluorescence microscopy (EFM) and flow cytometry (FC) were highly correlated (r2 = 0.89 and r2 = 0.87, respectively), although estimates by EFM were slightly higher (FC = 1.08 × EFM + 0.12 and FC = 1.07 × EFM + 0.43, respectively). Viral abundances ranged from 0.13 × 106 to 23 × 106 ml− 1, and in surface waters were ~ 2-fold higher during the spring bloom in May and June and ~ 1.5-fold higher during July and August, relative to winter abundances. These increases were coincident with a ~ 6-fold increase in chl a during spring and a ~ 4-fold increase in bacteria during summer. Surface viral abundances near the Mackenzie River were ~ 2-fold higher than in the Mackenzie Shelf and Amundsen Gulf regions during the peak summer discharge, concomitant with a ~ 5.5-fold increase in chl a (up to 2.4 μg l− 1) and a ~ 2-fold increase in bacterial abundance (up to 22 × 105 ml− 1). Using FC, two subgroups of viruses and heterotrophic bacteria were defined. A low SYBR-green fluorescence virus subgroup (V2) representing ~ 71% of the total viral abundance, was linked to the abundance of high nucleic acid fluorescence (HNA) bacteria (a proxy for bacterial activity), which represented 42 to 72% of the bacteria in surface layers. A high SYBR-green fluorescence viral subgroup (V1) was more related to high chl a concentrations that occurred in surface waters during spring and at stations near the Mackenzie River plume during the summer discharge. These results suggest that V1 infect phytoplankton, while most V2 are bacteriophages. On the Beaufort Sea shelf, viral abundance displayed seasonal and spatial variations in conjunction with chl a concentration, bacterial abundance and composition, temperature, salinity and depth. The highly dynamic nature of viral abundance and its correlation with increases in chl a concentration and bacterial abundance implies that viruses are important agents of microbial mortality in Arctic shelf waters.  相似文献   

15.
During the late austral summer of 1994, Antarctic waters were characterized by low phytoplankton biomass. Along the 62°E meridian transect, between 49°S and 67°S, chlorophyll (Chl.) a concentration in the upper 150 m was on average 0.2 mg m−3. However, in the Seasonal Ice Zone (SIZ) chlorophyll a concentrations were higher, with a characteristic deep chlorophyll maximum. The highest value (0.6 mg Chl. a m−3) was measured at the Antarctic Divergence, 64°S, corresponding to the depth of the temperature minimum (100 m). This deep biomass maximum decreased from South to North, disappeared in the Permanently Open Ocean Zone (POOZ) and reappeared with less vigour in the vicinity of the Polar Front Zone (PFZ). In the SIZ, the upper mixed layer was shallow, biomass was higher and the >10 μm fraction was predominant. In this zone the >10 μm, 2–10 μm and <2 μm size fractions represented on the average 46%, 25.1% and 28.9% of the total integrated Chl. a stock in the upper 100 m, respectively. The phytoplankton assemblage was diverse, mainly composed of large diatoms and dinoflagellate cells which contributed 42.7% and 33.1% of the autotrophic carbon biomass, respectively. Moving northwards, in parallel with the decrease in biomass, the biomass of autotrophic pico- and nanoflagellates (mainly Cryptophytes) increased steadily. In the POOZ, the picoplanktonic size fraction contributed 47.4% of the total integrated Chl. a stock. A phytoplankton community structure with low biomass and picoplankton-dominated assemblage in the POOZ contrasted with the relatively rich, diverse and diatom-dominated assemblage in the SIZ. These differences reflect the spatial and temporal variations prevailing in the Southern Ocean pelagic ecosystem.  相似文献   

16.
Particulate organic matter (POM), nutrients, chlorophyll-a (CHL) and primary production measurements were performed in the upper layer of three different regions (cyclonic, anticyclonic and frontal+peripherial) of the NE Mediterranean Sea in 1991–1994. Depth profiles of bulk POM exhibited a subsurface maximum, coinciding with the deep chlorophyll maximum (DCM) established near the base of the euphotic zone of the Rhodes cyclone and its periphery, where the nutricline was situated just below the euphotic zone for most of the year. Moreover, the POM peaks were broader and situated at shallower depths in late winter–early spring as compared to its position in the summer–autumn period. Under prolonged winter conditions, as experienced in March 1992, the characteristic POM feature disappeared in the center of the Rhodes cyclone, where the upper layer was entirely occupied by nutrient-rich Levantine deep water. Deep convective processes in the cyclonic gyre led to the formation of vertically uniform POM profiles with low concentrations of particulate organic carbon (POC) (2.1 μM), nitrogen (0.21 μM), total particulate phosphorus (PP) (0.02 μM) and chlorophyll-a (0.5 μg/L) in the euphotic zone. Though the Levantine deep waters ascended up to the surface layer with the nitrate/phosphate molar ratios (28–29) in March 1992, the N/P molar ratio of bulk POM in the upper layer was low as 10–12, indicating luxury consumption of phosphate during algal production. Depth-integrated primary production in the euphotic zone ranged from 38.5 for oligotrophic autumn to 457 mg C m−2 day−1 for moderately mesotrophic cool winter conditions.  相似文献   

17.
In many parts of the world coastal waters with anthropogenic eutrophication have experienced a gradual depletion of dissolved silica (DSi) stocks. This could put pressure on spring bloom diatom populations, e.g. by limiting the intensity of blooms or by causing shifts in species composition. In addition, eutrophication driven enhanced diatom growth is responsible for the redistribution of DSi from the water phase to the sediments, and changes in the growth conditions may be reflected in the sediment diatom stratigraphy.To test for changes in diatom communities we have analyzed four sediment cores from the Baltic Sea covering approximately the last 100 years. The sediment cores originate from the western Gulf of Finland, the Kattegat, the Baltic Proper and the Gulf of Riga. Three out of the four cores reveal only minor changes in composition of diatom assemblages, while the Gulf of Riga core contains major changes, occurring after the second World War. This area is set apart from the other Baltic Sea basins by a high frequency of low after spring bloom DSi concentrations (< 2 µmol L− 1) during a relatively well defined time period from 1991–1998. In 1991 to 1993 a rapid decline of DSi spring concentrations and winter stocks (down to 5 µmol L− 1) in the Gulf was preceded by exceptionally intense diatom spring blooms dominated by the heavily silicified species Thalassiosira baltica (1991–1992; up to 5.5 mg ww L− 1). T. baltica has been the principal spring bloom diatom in the Gulf of Riga since records began in 1975. DSi consumption and biomass yield experiments with cultured T. baltica suggest that intense blooms can potentially exhaust the DSi stock of the water column and exceed the annual Si dissolution in the Gulf of Riga. The phytoplankton time series reveals another exceptional T. baltica bloom period in 1981–1983 (up to 8 mg L− 1), which, however, took place before the regular DSi measurements. These periods may be reflected in the conspicuous accumulation of T. baltica frustules in the sediment core corresponding to ca. 1975–1985.  相似文献   

18.
Silicon dynamics in the Oder estuary, Baltic Sea   总被引:1,自引:0,他引:1  
Studies on dissolved silicate (DSi) and biogenic silica (BSi) dynamics were carried out in the Oder estuary, Baltic Sea in 2000–2005. The Oder estuary proved to be an important component of the Oder River–Baltic Sea continuum where very intensive seasonal DSi uptake during spring and autumn, but also BSi regeneration during summer take place. Owing to the regeneration process annual DSi patterns in the river and the estuary distinctly differed; the annual patterns of DSi in the estuary showed two maxima and two minima in contrast to one maximum- and one minimum-pattern in the Oder River. DSi concentrations in the river and in the estuary were highest in winter (200–250 μmol dm− 3) and lowest (often less than 1 μmol dm− 3) in spring, concomitant with diatom growth; such low values are known to be limiting for new diatom growth. Secondary DSi summer peaks at the estuary exit exceeded 100 μmol dm− 3, and these maxima were followed by autumn minima coinciding with the autumn diatom bloom. Seasonal peaks in BSi concentrations (ca. 100 μmol dm− 3) occurred during the spring diatom bloom in the Oder River. Mass balance calculations of DSi and BSi showed that DSi + BSi import to the estuary over a two year period was 103.2 kt and that can be compared with the DSi export of 98.5 kt. The difference between these numbers gives room for ca. 2.5 kt BSi to be annually exported to the Baltic Sea. Sediment cores studies point to BSi annual accumulation on the level of 2.5 kt BSi. BSi import to the estuary is on the level of ca. 10.5 kt, thus ca. 5 kt of BSi is annually converted into the DSi, increasing the pool of DSi that leaves the system. BSi concentrations being ca. 2 times higher at the estuary entrance than at its exit remain in a good agreement with the DSi and BSi budgeting presented in the paper.  相似文献   

19.
The upper water column in the Irminger Sea is characterized by cold fresh arctic and subarctic waters and warm saline North Atlantic waters. In this study the local physical and meteorological preconditioning of the phytoplankton development over an annual cycle in the upper water column in four physical zones of the Irminger Sea is investigated. Data from four cruises of the UK's Marine Productivity programme are combined with results from a coupled biological–physical nitrogen–phytoplankton–zooplankton–detritus model run using realistic forcing. The observations and model predictions are compared and analyzed to identify the key parameters and processes which determine the observed heterogeneity in biological production in the Irminger Sea. The simulations show differences in the onset of the bloom, in the time of the occurrence of the maximum phytoplankton biomass and in the length of the bloom between the zones. The longest phytoplankton bloom of 90 days duration was predicted for the East Greenland Current of Atlantic origin zone. In contrast, for the Central Irminger Sea zone a phytoplankton bloom with a start at the beginning of May and the shortest duration of only 70 days was simulated. The latest onset of the phytoplankton bloom in mid May and the latest occurrence of the maximum biomass (end of July) were predicted for the Northern Irminger Current zone. Here the bloom lasted for 80 days. In contrast the phytoplankton bloom in the Southern Irminger Current zone started at the same time as in Central Irminger Sea, but peaked end of June and lasted for 80 days. For all four zones relatively low daily (0.3–0.5 g C m− 2d− 1) and annual primary production was simulated, ranging between 35.6 g C m− 2y− 1 in the East Greenland Current of Atlantic origin zone and 45.6 g C m− 2y− 1 in the Northern Irminger Current zone. The model successfully simulated the observed regional and spatial differences in terms of the maximum depth of winter mixing, the onset of stratification and the development of the seasonal thermocline, and the differences in biological characteristics between the zones. The initial properties of the water column and the seasonal cycle of physical and meteorological forcing in each of the zones are responsible for the observed differences during the Marine Productivity cruises. The timing of the transition from mixing to stratification regime, and the different prevailing light levels in each zone are identified as the crucial processes/parameters for the understanding of the dynamics of the pelagic ecosystem in the Irminger Sea.  相似文献   

20.
A total of 2759 stomachs collected from a bottom trawl survey carried out by R/V “Bei Dou” in the Yellow Sea between 32°00 and 36°30N in autumn 2000 and spring 2001 were examined. The trophic levels (TL) of eight dominant fish species were calculated based on stomach contents, and trophic levels of 17 dominant species in the Yellow Sea and the Bohai Sea reported in later 1950s and mid-1980s were estimated so as to be comparable. The results indicated that the mean trophic level at high trophic levels declined from 4.06 in 1959–1960 to 3.41 in 1998–1999, or 0.16–0.19·decade− 1 (mean 0.17·decade− 1) in the Bohai Sea, and from 3.61 in 1985–1986 to 3.40 in 2000–2001, or 0.14·decade− 1 in the Yellow Sea; all higher than global trend. The dominant species composition in the Yellow Sea and the Bohai Sea changed, with the percentage of planktivorous species increases and piscivorous or omnivorous species decreases, and this was one of the main reasons for the decline in mean trophic level at high tropic levels. Another main reason was intraspecific changes in TL. Similarly, many factors caused decline of trophic levels in the dominant fish species in the Yellow Sea and the Bohai Sea. Firstly, TL of the same prey got lower, and anchovy (Engraulis japonicus) as prey was most representative. Secondly, TLs of diet composition getting lower resulted in not only decline of trophic levels but also changed feeding habits of some species, such as spotted velvetfish (Erisphex pottii) and Trichiurus muticus in the Yellow Sea. Thirdly, species size getting smaller also resulted in not only decline of trophic levels but also changed feeding habits of some species, such as Bambay duck (Harpodon nehereus) and largehead hairtail (Trichiurus haumela). Furthermore, fishing pressure and climate change may be interfering to cause fishing down the food web in the China coastal ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号