首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper establishes the continuity of the path delay operators for dynamic network loading (DNL) problems based on the Lighthill–Whitham–Richards model, which explicitly capture vehicle spillback. The DNL describes and predicts the spatial-temporal evolution of traffic flow and congestion on a network that is consistent with established route and departure time choices of travelers. The LWR-based DNL model is first formulated as a system of partial differential algebraic equations. We then investigate the continuous dependence of merge and diverge junction models with respect to their initial/boundary conditions, which leads to the continuity of the path delay operator through the wave-front tracking methodology and the generalized tangent vector technique. As part of our analysis leading up to the main continuity result, we also provide an estimation of the minimum network supply without resort to any numerical computation. In particular, it is shown that gridlock can never occur in a finite time horizon in the DNL model.  相似文献   

2.
In this paper a novel solution algorithm is proposed for exactly solving simplified first order dynamic network loading (DNL) problems for any generalised network. This DNL solution algorithm, termed eLTM (event-based Link Transmission Model), is based on the seminal Lighthill–Witham–Richards (LWR) model, adopts a triangular fundamental diagram and includes a generalised first order node model formulation. Unlike virtually all DNL solution algorithms, eLTM does not rely on time discretisation, but instead adopts an event based approach. The main advantage of this approach is the possibility of yielding exact results. Furthermore, an approximate version of the same algorithm is introduced. The user can configure an a-priori threshold that dictates the approximation error (measurable a-posteriori). Using this approximation the computational effort required decreases significantly, making it especially suitable for large scale applications. The computational complexity is investigated and results are demonstrated via theoretical and real world case studies. Fixed periods of stationary demands are included adopting a matrix demand profile to mimic basic departure time demand fluctuations. Finally, the information loss of the approximate solution is assessed under different configurations.  相似文献   

3.
A dynamic traffic assignment (DTA) model typically consists of a traffic performance model and a route choice model. The traffic performance model describes how traffic propagates (over time) along routes connecting origin-destination (OD) pairs, examples being the cell transmission model, the vertical queueing model and the travel time model. This is implemented in a dynamic network loading (DNL) algorithm, which uses the given route inflows to compute the link inflows (and hence link costs), which are then used to compute the route travel times (and hence route costs). A route swap process specifies the route inflows for tomorrow (at the next iteration) based on the route inflows today (at the current iteration). A dynamic user equilibrium (DUE), where each traveller on the network cannot reduce his or her cost of travel by switching to another route, can be sought by iterating between the DNL algorithm and the route swap process. The route swap process itself takes up very little computational time (although route set generation can be very computationally intensive for large networks). However, the choice of route swap process dramatically affects convergence and the speed of convergence. The paper details several route swap processes and considers whether they lead to a convergent system, assuming that the route cost vector is a monotone function of the route inflow vector.  相似文献   

4.
The family of macroscopic node models which comply to a set of basic requirements is presented and analysed. Such models are required in macro-, mesoscopic traffic flow models, including dynamic network loading models for dynamic traffic assignment. Based on the behaviour of drivers approaching and passing through intersections, the model family is presented. The headway and the turn delay of vehicles are key variables. Having demand and supply as input creates a natural connection to macroscopic link models. Properties like the invariance principle and the conservation of turning fractions are satisfied. The inherent non-uniqueness is analysed by providing the complete set of feasible solutions. The node models proposed by Tampère et al. (2011), Flötteröd and Rohde (2011) and Gibb (2011) are members of the family. Furthermore, two new models are added to the family. Solution methods for all family members are presented, as well as a qualitative and quantitative comparison. Finally, an outlook for the future development of empirically verified models is given.  相似文献   

5.
Node models for macroscopic simulation have attracted relatively little attention in the literature. Nevertheless, in dynamic network loading (DNL) models for congested road networks, node models are as important as the extensively studied link models. This paper provides an overview of macroscopic node models found in the literature, explaining both their contributions and shortcomings. A formulation defining a generic class of first order macroscopic node models is presented, satisfying a list of requirements necessary to produce node models with realistic, consistent results. Defining a specific node model instance of this class requires the specification of a supply constraint interaction rule and (optionally) node supply constraints. Following this theoretical discussion, specific macroscopic node model instances for unsignalized and signalized intersections are proposed. These models apply an oriented capacity proportional distribution of the available supply over the incoming links of a node. A computationally efficient algorithm to solve the node models exactly is included.  相似文献   

6.
Currently, the applicability of macroscopic Dynamic Network Loading (DNL) models for large-scale problems such as network-wide traffic management, reliability and vulnerability studies, network design, traffic flow optimization and dynamic origin–destination (OD) estimation is computationally problematic. The main reason is that these applications require a large number of DNL runs to be performed. Marginal DNL simulation, introduced in this paper, exploits the fact that the successive simulations often exhibit a large overlap. Through marginal simulation, repeated DNL simulations can be performed much faster by approximating each simulation as a variation to a base scenario. Thus, repetition of identical calculations is largely avoided. The marginal DNL algorithm that is presented, the Marginal Computation (MaC) algorithm, is based on first order kinematic wave theory. Hence, it realistically captures congestion dynamics. MaC can simulate both demand and supply variations, making it useful for a wide range of DNL applications. Case studies on different types of networks are presented to illustrate its performance.  相似文献   

7.
We present a dynamic network loading model that yields queue length distributions, accounts for spillbacks, and maintains a differentiable mapping from the dynamic demand on the dynamic queue lengths. The model also captures the spatial correlation of all queues adjacent to a node, and derives their joint distribution. The approach builds upon an existing stationary queueing network model that is based on finite capacity queueing theory. The original model is specified in terms of a set of differentiable equations, which in the new model are carried over to a set of equally smooth difference equations. The physical correctness of the new model is experimentally confirmed in several congestion regimes. A comparison with results predicted by the kinematic wave model (KWM) shows that the new model correctly represents the dynamic build-up, spillback and dissipation of queues. It goes beyond the KWM in that it captures queue lengths and spillbacks probabilistically, which allows for a richer analysis than the deterministic predictions of the KWM. The new model also generates a plausible fundamental diagram, which demonstrates that it captures well the stationary flow/density relationships in both congested and uncongested conditions.  相似文献   

8.
Vehicle discharge headway at signalized intersections is of great importance in junction analysis. However, it is very difficult to simulate the discharge headway of individual queued vehicle because of the great variations in the driver behaviors, vehicle characteristics and traffic environment. The current study proposes a neural network (NN) approach to simulate the queued vehicle discharge headway. A computer-based three-layered (NN) model was developed for the estimation of discharge headway. The widely used backpropagation algorithm has been utilized in training the NN model. The NN model was trained, validated with field data and then compared with other headway models. It was found that the NN model performed better. Model sensitivity analysis was conducted to further validate the applicability of the model. Results showed that the NN model could produce reasonable discharge headway estimates for individual vehicles.  相似文献   

9.
This paper proposes a bi-level model for traffic network signal control, which is formulated as a dynamic Stackelberg game and solved as a mathematical program with equilibrium constraints (MPEC). The lower-level problem is a dynamic user equilibrium (DUE) with embedded dynamic network loading (DNL) sub-problem based on the LWR model (Lighthill and Whitham, 1955; Richards, 1956). The upper-level decision variables are (time-varying) signal green splits with the objective of minimizing network-wide travel cost. Unlike most existing literature which mainly use an on-and-off (binary) representation of the signal controls, we employ a continuum signal model recently proposed and analyzed in Han et al. (2014), which aims at describing and predicting the aggregate behavior that exists at signalized intersections without relying on distinct signal phases. Advantages of this continuum signal model include fewer integer variables, less restrictive constraints on the time steps, and higher decision resolution. It simplifies the modeling representation of large-scale urban traffic networks with the benefit of improved computational efficiency in simulation or optimization. We present, for the LWR-based DNL model that explicitly captures vehicle spillback, an in-depth study on the implementation of the continuum signal model, as its approximation accuracy depends on a number of factors and may deteriorate greatly under certain conditions. The proposed MPEC is solved on two test networks with three metaheuristic methods. Parallel computing is employed to significantly accelerate the solution procedure.  相似文献   

10.
First-order network flow models are coupled systems of differential equations which describe the build-up and dissipation of congestion along network road segments, known as link models. Models describing flows across network junctions, referred to as node models, play the role of the coupling between the link models and are responsible for capturing the propagation of traffic dynamics through the network. Node models are typically stated as optimization problems, so that the coupling between the link dynamics is not known explicitly. This renders network flow models analytically intractable. This paper examines the properties of node models for urban networks. Solutions to node models that are free of traffic holding, referred to as holding-free solutions, are formally defined and it is shown that flow maximization is only a sufficient condition for holding-free solutions. A simple greedy algorithm is shown to produce holding-free solutions while also respecting the invariance principle. Staging movements through nodes in a manner that prevents conflicting flows from proceeding through the nodes simultaneously is shown to simplify the node models considerably and promote unique solutions. The staging also models intersection capacities in a more realistic way by preventing unrealistically large flows when there is ample supply in the downstream and preventing artificial blocking when some of the downstream supplies are restricted.  相似文献   

11.
The following paper presents a dynamic macroscopic model for unsignalized intersections which accounts for time-limited disruptions in the minor stream flow, even in free-flow conditions when the average flow demand is satisfied. It introduces a deterministic fictive traffic light to represent an average alternating sequence of available and busy time periods for insertion depending on the major stream flow. Two allocation schemes of the total outflow during green periods are developed to model the influence or non-influence of the minor stream over the major stream flow. The aggregation of the resulting dynamic flow variations gives relevant capacity values. Moreover, the model predicts accurate average vehicle delay and queue length estimates compared to theoretical and empirical data. It has three easy-to-measure parameters and can be integrated into a dynamic macroscopic simulation tool for urban networks.  相似文献   

12.
This article proposes Δ-tolling, a simple adaptive pricing scheme which only requires travel time observations and two tuning parameters. These tolls are applied throughout a road network, and can be updated as frequently as travel time observations are made. Notably, Δ-tolling does not require any details of the traffic flow or travel demand models other than travel time observations, rendering it easy to apply in real-time. The flexibility of this tolling scheme is demonstrated in three specific traffic modeling contexts with varying traffic flow and user behavior assumptions: a day-to-day pricing model using static network equilibrium with link delay functions; a within-day adaptive pricing model using the cell transmission model and dynamic routing of vehicles; and a microsimulation of reservation-based intersection control for connected and autonomous vehicles with myopic routing. In all cases, Δ-tolling produces significant benefits over the no-toll case, measured in terms of average travel time and social welfare, while only requiring two parameters to be tuned. Some optimality results are also given for the special case of the static network equilibrium model with BPR-style delay functions.  相似文献   

13.
The paper adopts the framework employed by the existing dynamic assignment models, which analyse specific network forms, and develops a methodology for analysing general networks. Traffic conditions within a link are assumed to be homogeneous, and the time varying O-D travel times and traffic flow patterns are calculated using elementary relationships from traffic flow theory and link volume conservation equations. Each individual is assumed to select a departure time and a route by trading off the travel time and schedule delay associated with each alternative. A route is considered as reasonable if it includes only links which do not take the traveller back to the origin. The set of reasonable routes is not consistant but depends on the time that an individual decides to depart from his origin. Equilibrium distributions are derived from a Markovian model which describes the evolution of travel patterns from day to day. Numerical simulation experiments are conducted to analyse the impact of different work start time flexibilities on the time dependent travel patterns. The similarity between link flows and travel times obtained from static and dynamic stochastic assignment is investigated. It is shown that in congested networks the application of static assignment results in travel times which are lower than the ones predicted by dynamic assignment.  相似文献   

14.
This paper proposes a novel dynamic speed limit control model accounting for uncertain traffic demand and supply in a stochastic traffic network. First, a link based dynamic network loading model is developed to simulate the traffic flow propagation allowing the change of speed limits. Shockwave propagation is well defined and captured by checking the difference between the queue forming end and the dissipation end. Second, the dynamic speed limit problem is formulated as a Markov Decision Process (MDP) problem and solved by a real time control mechanism. The speed limit controller is modeled as an intelligent agent interacting with the stochastic network environment stochastic network environment to assign time dependent link based speed limits. Based on different metrics, e.g. total network throughput, delay time, vehicular emissions are optimized in the modeling framework, the optimal speed limit scheme is obtained by applying the R-Markov Average Reward Technique (R-MART) based reinforcement learning algorithm. A case study of the Sioux Falls network is constructed to test the performance of the model. Results show that the total travel time and emissions (in terms of CO) are reduced by around 18% and 20% compared with the base case of non-speed limit control.  相似文献   

15.
This paper presents an integrated transit-oriented travel demand modeling procedure within the framework of geographic information systems (GIS). Focusing on transit network development, this paper presents both the procedure and algorithm for automatically generating both link and line data for transit demand modeling from the conventional street network data using spatial analysis and dynamic segmentation. For this purpose, transit stop digitizing, topology and route system building, and the conversion of route and stop data into link and line data sets are performed. Using spatial analysis, such as the functionality to search arcs nearest from a given node, the nearest stops are identified along the associated links of the transit line, while the topological relation between links and line data sets can also be computed using dynamic segmentation. The advantage of this approach is that street map databases represented by a centerline can be directly used along with the existing legacy urban transportation planning systems (UTPS) type travel modeling packages and existing GIS without incurring the additional cost of purchasing a full-blown transportation GIS package. A small test network is adopted to demonstrate the process and the results. The authors anticipate that the procedure set forth in this paper will be useful to many cities and regional transit agencies in their transit demand modeling process within the integrated GIS-based computing environment.  相似文献   

16.
A cell-based variant of the Merchant-Nemhauser (M-N) model is proposed for the system optimum (SO) dynamic traffic assignment (DTA) problem. Once linearized and augmented with additional constraints to capture cross-cell interactions, the model becomes a linear program that embeds a relaxed cell transmission model (CTM) to propagate traffic. As a result, we show that CTM-type traffic dynamics can be derived from the original M-N model, when the exit-flow function is properly selected and discretized. The proposed cell-based M-N model has a simple constraint structure and cell network representation because all intersections and cells are treated uniformly. Path marginal costs are defined using a recursive formula that involves a subset of multipliers from the linear program. This definition is then employed to interpret the necessary condition, which is a dynamic extension of the Wardrop’s second principle. An algorithm is presented to solve the flow holding back problem that is known to exist in many discrete SO-DTA models. A numerical experiment is conducted to verify the proposed model and algorithm.  相似文献   

17.
This paper investigates intermodal freight transport planning problems among deep-sea terminals and inland terminals in hinterland haulage for a horizontally fully integrated intermodal freight transport operator at the tactical container flow level. An intermodal freight transport network (IFTN) model is first developed to capture the key characteristics of intermodal freight transport such as the modality change phenomena at intermodal terminals, physical capacity constraints of the network, time-dependent transport times on freeways, and time schedules for trains and barges. After that, the intermodal freight transport planning problem is formulated as an optimal intermodal container flow control problem from a system and control perspective with the use of the proposed IFTN model. To deal with the dynamic transport demands and dynamic traffic conditions in the IFTN, a receding horizon intermodal container flow control (RIFC) approach is proposed to control and to reassign intermodal container flows in a receding horizon way. This container flow control approach involves solving linear programming problems and is suited for transport planning on large-sized networks. Both an all-or-nothing approach and the proposed RIFC approach are evaluated through simulation studies. Simulation results show the potential of the proposed RIFC approach.  相似文献   

18.
The paper presents a unified macroscopic model-based approach to real-time freeway network traffic surveillance as well as a software tool RENAISSANCE that has been recently developed to implement this approach for field applications. RENAISSANCE is designed on the basis of stochastic macroscopic freeway network traffic flow modeling, extended Kalman filtering, and a number of traffic surveillance algorithms. Fed with a limited amount of real-time traffic measurements, RENAISSANCE enables a number of freeway network traffic surveillance tasks, including traffic state estimation and short-term traffic state prediction, travel time estimation and prediction, queue tail/head/length estimation and prediction, and incident alarm. The traffic state estimation and prediction lay the operating foundation of RENAISSANCE since RENAISSANCE bases the other traffic surveillance tasks on its traffic state estimation or prediction results. The paper first introduces the utilized stochastic macroscopic freeway network traffic flow model and a real-time traffic measurement model, upon which the complete dynamic system model of RENAISSANCE is established with special attention to the handling of some important model parameters. The algorithms for the various traffic surveillance tasks addressed are described along with the functional architecture of the tool. A simulation test was conducted via application of RENAISSANCE to a hypothetical freeway network example with a sparse detector configuration, and the testing results are presented in some detail. Final conclusions and future work are outlined.  相似文献   

19.
In the research area of dynamic traffic assignment, link travel times can be derived from link cumulative inflow and outflow curves which are generated by dynamic network loading. In this paper, the profiles of cumulative flows are piecewise linearized. Both the step function (SF) and linear interpolation (LI) are used to approximate cumulative flows over time. New formulations of the SF-type and LI-type link travel time models are developed. We prove that these two types of link travel time models ensure first-in-first-out (FIFO) and continuity of travel times with respect to flows, and have other desirable properties. Since the LI-type link travel time model does not satisfy the causality property, a modified LI-type (MLI-type) link travel time model is proposed in this paper. We prove that the MLI-type link travel time model ensures causality, strong FIFO and travel time continuity, and that the MLI-type link travel time function is strictly monotone under the condition that the travel time of each vehicle on a link is greater than the free flow travel time on that link. Numerical examples are set up to illustrate the properties and accuracy of the three models.  相似文献   

20.
Neural networks have been extensively applied to short-term traffic prediction in the past years. This study proposes a novel architecture of neural networks, Long Short-Term Neural Network (LSTM NN), to capture nonlinear traffic dynamic in an effective manner. The LSTM NN can overcome the issue of back-propagated error decay through memory blocks, and thus exhibits the superior capability for time series prediction with long temporal dependency. In addition, the LSTM NN can automatically determine the optimal time lags. To validate the effectiveness of LSTM NN, travel speed data from traffic microwave detectors in Beijing are used for model training and testing. A comparison with different topologies of dynamic neural networks as well as other prevailing parametric and nonparametric algorithms suggests that LSTM NN can achieve the best prediction performance in terms of both accuracy and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号