首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
利用GPM-30滚动接触疲劳磨损试验机,在油润滑条件下试验研究轮轨材料对丝锥硌伤诱发局部滚动接触疲劳(LRCF)的影响,涉及ER8高速车轮钢、U71MnG高速钢轨钢,以及1 280 MPa和1 380 MPa级的贝马复相、PG4、PG5等4种新开发的重载钢轨钢。发现硌伤诱发的剥离掉块仅发生在硬度低于300 HV的ER8和U71MnG高速轮轨材料,且只有在硌伤深度超过150~200μm的临界值时发生,对于硬度高于400 HV的重载钢轨材料,表面硌伤不太可能诱发局部滚动接触疲劳。试样表面和剖切观测显示,初始疲劳裂纹可萌生于硌伤内部和前、后沿,底部萌生的裂纹更容易导致包含深裂纹和大块剥离的局部滚动接触疲劳,后沿比前沿更容易萌生初始裂纹。与U71MnG高速钢轨相比,硬度更低的ER8高速车轮钢试样上硌伤引发剥离掉块的可能性更高,但U71MnG钢轨钢试样上萌生的初始裂纹可扩展得更宽、更深,更易引发大块剥离,局部滚动接触疲劳造成的后果更严重。  相似文献   

2.
《机车电传动》2021,(4):26-33
为了研究车轮扁疤对高速列车轮轨接触蠕滑特性的影响,基于多体动力学理论和滚动接触简化理论,建立考虑轮对柔性的刚柔耦合车辆动力学模型,分析车轮扁疤参数变化对高速列车轮轨力和蠕滑力等特性的影响,并结合轮重减载率和轮轨垂向力指标得到车轮扁疤长度的安全限值。结果表明:考虑轮对柔性能更好地反映轮轨接触状态;在轮轨滚动接触过程中,车轮扁疤过长会导致轮对发生跳轨现象,严重时导致车辆脱轨,应及时根据扁疤长度限值镟修轮对;结合轮重减载率和轮轨垂向力制定车轮扁疤长度安全限值为27 mm,该限值可以更有效地保障高速列车安全运行。  相似文献   

3.
针对柔性轨道下因谐波磨耗车轮激励而引发钢轨和轮对振动时的轮轨蠕滑问题,在分析柔性轨道下轮轨间滚动接触振动对轮轨蠕滑特性影响机理的基础上,基于CRTS型双块式无砟轨道和CRH2型高速列车,采用ANSYS和UM软件建立柔性轨道下高速列车的动力学数值模型;选取6种典型谐波磨耗(阶数分别为1,6和11阶;对应波深分别为0.1和0.3mm)车轮,进行轮轨滚动接触振动特性、轮轨蠕滑力和蠕滑率的分析。结果表明:车轮谐波磨耗阶数和波深的增加均导致钢轨垂向加速度、轮对垂向加速度、轮轨垂向力及轮轨蠕滑力和蠕滑率的大幅增加,且与阶数的影响相比,波深对滚动接触蠕滑特性的影响更大;当车轮的谐波磨耗取11阶和0.3mm波深时,轮轨垂向力最大值、钢轨垂向加速度最大值、轮对垂向加速度最大值和平均值、纵向蠕滑率平均值、纵向蠕滑力绝对平均值、横向蠕滑力最大值、纵向蠕滑力最大值分别约为车轮无谐波磨耗时的7.27,49.6,20.35,15.18,7.8,9.064,6.7和8.57倍;考虑柔性轨道后,轮轨接触脱离时间明显增加,轮轨蠕滑率和蠕滑力也有明显增大。  相似文献   

4.
将轨道系统视为无质量的黏弹性力元,运用多体动力学软件UM建立CRH2型高速列车单个车体的车辆—轨道耦合动力学模型,并结合轮轨非椭圆滚动接触模型和车轮型面磨耗演变模型,以车轮最大磨耗深度为0.1mm作为车轮型面更新的条件,通过动力学仿真研究轨道系统振动、车辆悬挂力元非线性和轮轨接触几何非线性特性等影响下滚动圆半径差、等效锥度、接触角和接触点分布等轮轨接触几何参数的时变规律。结果表明:通过不同运营里程下车轮型面磨耗和名义滚动圆半径处磨耗仿真与实测的对比结果,验证了模型的准确性;随着运营时间的推移和运营里程的增加,车轮型面磨耗会对轮轨接触几何参数产生明显的影响:其中,等效锥度、滚动圆半径差和接触角在运营里程从0逐渐增加到10万km的过程中变化明显,而从10万km逐渐增加到20万km时变化渐缓,然后在从20万km逐渐增加到25万km的过程中车轮型面磨耗又进一步加剧,等效锥度、滚动圆半径差和接触角的变化幅度又急剧增加,轮轨接触点分布则随着运营里程的增加由一点接触逐渐向两点接触演变,车辆的动力学性能也随之下降。  相似文献   

5.
为进一步研究车辆轨道接触特性和钢轨损伤,采用显式有限元法建立适用于三维轮轨瞬态滚动接触分析的有限元模型,将轮轨间黏着系数、牵引系数、列车速度等考虑在内,研究不同模型参数对轮轨瞬态滚动接触计算的影响.通过详细对比分析扣件系统、钢轨长度、轨道板及参数对轮轨瞬态接触解的影响,并结合车轮模态分析结果,引入不同波长的轨面几何不平...  相似文献   

6.
基于车辆动力学、非Hertz轮轨滚动接触理论和Archard磨损模型建立车轮磨耗预测模型.利用该模型和安定图对重载铁路车轮磨耗和滚动接触疲劳性能进行定性分析.在数值计算中,主要考察轴重为25 t和30 t货车的车轮硬度对车轮磨耗和滚动接触疲劳性能的影响.研究表明,轮轨间高应力水平的出现频次、车轮磨耗和疲劳破坏的几率随着轴重的增加而增大;随着硬度的增加,车轮磨耗和疲劳破坏现象得到改善.结合国外重载铁路轮轨匹配经验,建议轴重为30 t车轮的硬度大于340 HB.  相似文献   

7.
考虑轨道—车辆系统耦合振动以及轮轨几何非线性,建立高速轮轨瞬态滚动接触三维有限元模型,利用隐式与显式相结合的方法模拟高速轮轨瞬态滚动接触过程,轮轨接触采用面—面接触算法。基于列车通过频率和钢轨Pinned-Pinned频率,分析非稳态载荷作用下钢轨短波波磨区段轮轨间相互作用以及列车通过频率对波磨区段轨道—车辆系统动态响应的影响。结果表明:在钢轨波磨区段,轮轨瞬态接触力和牵引比随钢轨波磨几何不平顺的变化呈周期性波动,且牵引比与钢轨波磨几何不平顺呈反相位;当列车通过频率与钢轨PinnedPinned频率相近时引起轮轨系统共振,轮轨接触力出现"拍"振特性,在轨枕附近整体振动较大,加速钢轨扣件伤损,而在2个轨枕跨间整体振动较小;在牵引扭矩作用下,轮轨接触存在周期性黏滑振动,轮轨系统共振时,轨枕附近波磨波谷处的钢轨滑动磨损加剧,加速钢轨波磨的发展。  相似文献   

8.
针对我国高速铁路出现车轮磨耗相对较大的问题,对国内外高速铁路轮轨硬度匹配关系的研究及应用现状进行分析,并在实验室进行3种硬度车轮与3种硬度钢轨的对磨试验,对比分析硬度不同的车轮与钢轨对磨时的轮轨磨损、变形和接触疲劳伤损等。结果表明:适当提高车轮的硬度即提高轮轨硬度比以减轻车轮磨耗较大的问题已成为国际上通行的做法;9组轮轨磨损试验中,轮轨硬度比为0.95∶1~1.15∶1时轮轨总磨耗量较小,轮轨硬度比大于1∶1时,轮轨变形和表面接触疲劳伤损较轻,轮轨硬度比为1.15∶1时轮轨总磨耗量最小,且接触疲劳伤损也最轻;随着车轮硬度的提高,不但车轮的磨耗减小,而且其抗变形能力也显著增加。建议动车组车轮与U71MnG钢轨的硬度比控制在1∶1以上,以解决我国高速铁路车轮磨耗较大的问题。  相似文献   

9.
基于ALE有限元的轮轨稳态滚动接触分析   总被引:1,自引:0,他引:1  
基于Arbitrary Lagrangian Eulerrian(ALE)有限元方法建立稳态轮轨滚动接触的三维有限元模型.该模型用接触面上相对滑移速度定义轮轨滚动接触的黏着和蠕滑条件,并在虚功率方程中通过Lagrange乘子法引入接触界面上无切向滑移约束,更好地计算分析接触斑的黏着特性.该模型不但可以考虑材料、几何和接触非线性问题,还可以考虑车轮滚动速度、轮轨的实际几何形态以及惯性力的影响,并能分析接触斑的接触应力和相对滑移速度的分布情况.用该模型对单轮对在轨道上稳态滚动时的接触状态分析表明:基于该模型计算得到的轮轨滚动接触的接触斑形态和Hertz理论的椭圆假设有较大差别;通过相对滑移速度来描述接触斑滑动和黏着状态,更有利于描述轮轨的相互作用;明显观察到接触斑里的摩擦力分布和相对滑移速度的自旋效应;接触斑里摩擦力的旋转分布对轮轨系统的振动、轮轨的黏着和磨损的产生有较大影响.  相似文献   

10.
轮轨滚动接触疲劳问题研究的最新进展   总被引:23,自引:3,他引:20  
金学松  沈志云 《铁道学报》2001,23(2):92-108
由于轮轨之间的剧烈作用,轮轨滚动接触疲劳的破坏现象是非常严重的,这是至今尚未得到根本解决的难题,而且有些破坏机理尚不清楚。轮轨接触表面的疲劳破坏不仅使铁路运营成本增大,而且直接危害列车的行车安全。本文详细综述了轮轨滚动接触疲劳问题在近10年的研究进展情况,其中包括三维弹塑性滚动接触理论模型和数值方法,轮轨滚动接触疲劳破坏的各种因素数值分析方法和试验方法,以及轮轨新材料研究进展。涉及近10年来国内外发表的100多篇重要文献,并在此基础上提出了今后的研究方向。  相似文献   

11.
轮轨磨耗及滚动接触疲劳损伤是影响大轴重列车运行安全的重要因素,本文基于多体动力学软件UM建立了40 t轴重重载货车动力学模型,从轮轨磨耗、疲劳损伤2个角度,研究曲线半径对40 t轴重货车通过曲线时动力性能的影响,给出最小曲线半径的建议取值。研究结果表明:货车在曲线上运行时,轮轨磨耗和疲劳损伤均在小半径曲线上更严重;与400 m曲线半径相比,曲线半径800 m时轮轨磨耗降低68%,轮轨间出现轮缘接触的频次得到有效控制;曲线半径1 200 m时轮轨磨耗和疲劳损伤分别降低80%,58%,滚动圆外侧10~30 mm内基本不再出现疲劳损伤。建议最小曲线半径一般情况下取1 200 m,困难情况下取800 m。  相似文献   

12.
对国内某地铁线路的车轮磨耗规律进行了现场调查和分析。车轮磨耗集中于轮缘根部和踏面-25~30 mm范围。LM32模板动车车轮踏面磨耗突出区为-8~-4 mm,25万~40万km里程车轮最大磨耗量为2.5~4.0 mm。采用薄轮缘LM30模板镟轮的拖车车轮踏面磨耗集中在-10~10mm范围,19万km以内里程踏面磨耗量为0.2~0.5 mm。利用轮轨接触几何理论和轮轨滚动接触理论,研究不同车轮磨耗状态下的轮轨静态匹配性能,包括接触点对分布和轮轨接触应力,分析车轮表面裂纹的机理。车轮轮缘根部与钢轨轨距角集中接触容易导致接触光带偏向轨距角。轮缘根部及踏面上小曲率半径区与钢轨集中接触是产生车轮踏面接触疲劳的主要原因。  相似文献   

13.
重载铁路轮轨磨损原因探讨   总被引:2,自引:0,他引:2  
根据轮轨接触理论,分析了不同轮轨接触几何匹配关系下的轮轨接触应力情况,指出轮轨接触应力、轮轨接触几何关系、轴重是影响重载铁路轮轨磨损的主要因素,从重载运输装备方面提出了减少轮轨磨损的几点建议。  相似文献   

14.
高速铁路轮轨噪声预测分析   总被引:20,自引:3,他引:17  
基于高速铁路轮轨噪声机理,对高速铁路轮轨滚动噪声预测方法进行分析。建立高速铁路轮轨噪声预测分析模型,为轮轨噪声的控制提供必要的依据。在探讨列车—轨道相互作用关系、轮轨表面粗糙度、轮轨接触滤波、噪声辐射比、轮轨系统噪声辐射、地面的声反射等问题的基础上,对我国快速客运专线的轮轨噪声进行了数值仿真预测。给出轮轨噪声的频谱特性、距离衰减特性及随运行速度的变化规律。  相似文献   

15.
基于ALE (Arbitrary Lagrangian Eulerian)有限元建立稳态轮轨滚动接触的三维有限元模型.利用该模型计算和分析重载轮轨滚动接触的黏着特性,并研究不同速度等级对重载轮轨黏着蠕滑特性的影响.用该模型对重载大功率机车车轮在轨道上从制动、惰行到牵引过程进行计算,得到了这一过程中轮轨接触状态的变化规律和黏着特性曲线.在重载大功率机车从制动、惰行到牵引的过程中,轮轨纵向摩擦力由反方向饱和状态逐渐转变成牵引方向饱和状态,而轮轨横向摩擦力始终呈反对称性分布,其最大值位置先是逐渐靠近接触斑中心,然后又逐渐远离之;摩擦力矢量呈旋转分布,其方向从与运动方向相反逐渐变为与运动方向相同,其旋转中心从轮缘附近逐渐进入接触斑,随后又逐渐向轮缘一侧移动;当轮轨纵向蠕滑率较小(≤0.003)时,黏着力随纵向蠕滑率的增加而近似线性增加,但运行速度对此影响不大;进入大蠕滑率(>0.003)区域后,黏着力随蠕滑率的增加而减小,并且速度越高,黏着力降低得越快.  相似文献   

16.
运用非线性有限元分析软件ABAQUS,考虑通过直线、曲线线路和道岔3种工况,建立CRH2010A综合检测车的测力车轮与钢轨的三维滚动接触有限元模型,进行不同工况下测力车轮与钢轨的滚动接触特性及车轮辐板和轴毂的受力分析。结果表明:测力车轮的滚动接触特性与动车车轮相似;通过直线线路且轮对横移量为8mm时,产生轮缘效应,车轮磨损加剧;通过曲线线路时,左侧车轮与钢轨出现两点接触中心区;通过道岔时,左侧车轮与长心轨均发生塑性变形,车轮和钢轨的磨耗加剧;轴毂的过盈连接对轮轨接触特性的影响,远小于其对轴毂连接区域和辐板加工区域应力的影响;在这3种工况下测力车轮均满足静强度要求。  相似文献   

17.
铁路曲线上轮轨磨耗影响参数的仿真研究   总被引:4,自引:0,他引:4  
运用SIMPACK虚拟样机技术,从线路设计及养护维修的角度出发,对铁路曲线上车辆速度、轨底坡、曲线超高及钢轨涂油对轮轨磨耗的影响进行仿真计算和分析。分析结果表明:为降低轮轨磨耗及保证行车安全,车辆速度以比线路条件决定的最高行车速度略低为宜;曲线超高过低或过高均会增大轮轨磨耗,由于小半径曲线上设置的超高一般偏大,故而适当降低小半径曲线的超高对于降低轮轨磨耗是有利的;轨底坡的适当增大可使得轮轨磨耗有一定降低,但效果不明显,且轨底坡过大会加剧轮轨磨耗;对钢轨进行适当的涂油可有效降低轮轨磨耗,但应进行严格控制,涂油太多对于降低轮轨磨耗反而不利。  相似文献   

18.
高速轮轨接触几何关系的比较分析   总被引:7,自引:0,他引:7  
高速轮轨接触几何关系研究涉及诸多因素。选择中国车轮踏面LMA与钢轨CHN60、日本新干线圆弧车轮踏面JP-ARC与钢轨JIS60和欧洲标准车轮踏面S1002与钢轨UIS60,比较这3种轮轨关系的几何参数差异,编制了轮轨接触几何的数值分析软件,计算不同轮对内侧距情况下的轮轨接触几何关系,比较在轮对内侧距为1353和1360mm情况下,轮对横移时的滚动圆接触半径差和接触角差的数值计算结果,探讨适应于我国高速车轮踏面形状和轮对内侧距,为高速轮轨关系的深入研究提供基础。  相似文献   

19.
重载列车车辆轮轨作用研究   总被引:13,自引:3,他引:10  
通过对不同轴重、不同踏面外形和不同钢轨的轮轨接触最大应力的计算,得出轮轨接触应力随轴重、踏面和钢轨的变化情况。分析比较理论计算和试验结果,验证理论研究方法的正确性。研究表明:轮轨接触应力随着轴重的提高而增加;在运用初期轮轨磨耗量随运行里程增加急剧上升;随着轮轨间的进一步磨合,轮轨接触应力和磨耗量将稳定在一定水平;轴重从21 t提高到23 t,轮轨磨耗量增加80%左右;轴重从21 t提高到25 t,轮轨磨耗量增加150%左右;提高钢轨的重量等级,可以在增加车辆轴重的同时有效地降低轮轨接触应力及减少轮轨磨耗。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号