首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
通过室内试验对固化剂稳定细粒土的无侧限抗压强度、回弹模量和承载比性能展开了研究。研究表明:随着固化剂掺入量的增加,砂土与黏土的无侧限抗压强度逐渐增加;土壤固化剂的最佳掺入量为10%;固化砂土与固化黏土的最佳含水率分别为9.2%、14.3%。工程实例表明:土壤固化剂的掺入能够有效控制砂土与黏土路基的沉降,增加路基的抗压强度。  相似文献   

2.
为研究不同化学改良材料、掺量对赤泥的固化效果及路用力学性能的影响,通过室内和现场对比试验分析改良赤泥固化材料无侧限抗压强度和填筑路基回弹模量的变化规律。结果表明:水泥、石灰和综合改良均能提高拜耳法赤泥的力学性能,而综合改良赤泥的力学性能和水稳定性更优。不同剂量下的综合改良赤泥路基回弹模量测试结果表明填筑路基的整体强度和承载能力良好,可为赤泥填筑路基的设计参数和质量控制标准选定提供科学依据。  相似文献   

3.
李家宇  朱福 《北方交通》2020,(7):22-25,29
依托吉舒高速公路工程,通过重复加载动态回弹模量试验、承载比试验和导热性试验,研究分析了粉质黏土在不同木质素掺配比例、养生时间及冻融循环条件下的力学性质。试验结果表明:随着木质素掺量的增加,木质素改良粉质黏土的回弹模量减小;冻融循环作用下木质素改良粉质黏土的回弹模量及CBR减小幅度较小,导热系数随着木质素掺量增加而减小。木质素掺入路基土,提高了其抗冻性,降低了导热性,推荐季冻区粉质黏土路基最佳木质素掺量为4%。  相似文献   

4.
通过掺加了不同盐分和含盐量的水泥固化渍土的强度对比,初步分析各盐分对水泥固化土强度的影响作用。结果表明:在本次研究中,各种盐分及混合盐分对水泥固化土强度都有不良影响,其中氯盐对水泥固化土强度的影响较为严重。最后通过自制固化剂G1和G2来固化高含盐量、复合盐分盐渍土,发现自制固化剂固化效果较为理想,与水泥固化渍土相比,强度有较大提高。  相似文献   

5.
随着公路基础建设的快速发展,筑路材料逐渐紧缺,市场对新型化学材料的需求增加。 土壤固化剂是路面基层固化的新型化学材料,与石灰或水泥等无机结合料共同使用,可以改变土壤的组成和工程性质,提高土质强度、改善土质压实性。 通过研究固化剂成分,制备一种新型固化剂,并对其固化后的土进行无侧限抗压强度、劈裂强度及水稳定性能试验分析。 结果表明,固化剂对土的无侧限抗压强度、劈裂强度及水稳定性都有较明显的改善作用。当固化剂掺量0.03%、水泥掺量5%、石灰掺量3%时,养护龄期为28d的固化土,其无侧限抗压强度、劈裂强度和水稳定系数分别为6.954MPa、0.8178MPa和106.1%。  相似文献   

6.
选择三种固化剂,按照不同掺量对不同固化土基层材料进行无侧限抗压强度试验、劈裂强度试验、抗压回弹模量试验和水稳定性试验的对比研究,揭示了固化土基层材料的力学特性。在路用性能研究的基础上,认为固化土基层材料作为低等级公路路面基层能够达到技术标准要求,具有良好的经济效益和社会效益,在缺少石料的地区具有广泛的应用前景,有很大的推广应用价值。  相似文献   

7.
为提高粉质黏土-水泥搅拌土强度,使其与钢筋或型钢共同作用形成水泥土搅拌墙。以南昌地区粉质黏土为例,在现有水泥土改良剂性能研究基础上,通过选择合适的固化剂,采用正交试验,对16组粉质黏土改良方案形成的搅拌土开展室内无侧限抗压强度试验和渗透试验,研究水泥、水玻璃、生石膏和生石灰不同配比对粉质黏土改良后强度性能的影响,并对试验结果进行了极差和方差分析。结果表明:对搅拌土的抗压强度影响程度从大到小依次为水泥掺量、水玻璃掺量、生石膏和生石灰掺量,确定粉质黏土固化改良的最优配比为水泥掺入比24%、水玻璃6%、生石膏2%、生石灰0、萘系减水剂1.5%,并推荐在水灰比为1.5、粉质黏土含水率为12%时使用。经过筛选固化剂和优化配比后,粉质黏土在标准龄期28 d时强度可以达到8.6 MPa。最后通过扫描电镜试验,对高强粉质黏土-水泥搅拌土的微观结构进行了分析,阐述了高强水泥搅拌土的产生机理。  相似文献   

8.
为研究复掺膨胀剂和减缩剂水泥稳定碎石的路用性能,通过室内试验分析了复掺膨胀剂和减缩剂对水泥稳定碎石力学性能和干缩性能的影响。结果表明:复掺膨胀剂和减缩剂后,水泥稳定碎石试件的无侧限抗压强度、劈裂强度和劈裂回弹模量等指标均有所提高;随着膨胀剂掺量增加,减缩剂掺量减少,试件强度先增大后减小;掺外加剂抑制了试件劈裂回弹模量的后期增长,膨胀剂掺量增加,减缩剂掺量减少,该抑制作用增强。在实际工程中,复掺外加剂可通过减少膨胀剂掺量、增加减缩剂掺量提高水泥稳定碎石劈裂回弹模量的后期增长;复掺外加剂有助于改善水泥稳定碎石的干缩抗裂性能,且初期的改善效果更好;复掺膨胀剂和减缩剂存在最佳掺量,本试验条件下最佳掺量为复掺6%膨胀剂和2%减缩剂。  相似文献   

9.
为更好地模拟水泥冷再生混合料现场施工,采用旋转压实法制备水泥冷再生混合料试件,测试分析其力学性能及稳定性,并与静压成型法进行对比,探讨采用旋转压实法开展水泥冷再生混合料设计的可行性,并基于旋转压实法研究不同再生料掺量(60%、70%、80%)下水泥冷再生混合料的力学性能(抗压强度、劈裂强度及回弹模量)及稳定性能(水稳定性及冻稳定性)。结果表明,随新集料掺量增加,水泥冷再生混合料的最佳含水量降低、最大干密度增加;相同水泥剂量下,掺加新集料后,水泥冷再生混合料的力学强度、稳定性能明显提升;掺加30%新集料的水泥冷再生混合料无侧限抗压强度、劈裂强度及回弹模量相对于未掺加新集料的试件分别提升了约50%、80% 和 45%,软化系数和耐冻系数分别可提升到0.90以上;相对于传统的静压成型方法,旋转压实法制备的水泥冷再生混合料试件的力学性能提升幅度在30%以上,且稳定性能也略有提升。  相似文献   

10.
笔者在文中通过室内试验对水泥稳定粉土、石灰稳定粉土及固化剂稳定粉土的抗压强度、劈裂强度、弯拉强度、抗压回弹模量及弯拉回弹模量进行系统研究,得出强度和刚度增长规律,并在此基础上给出了各指标之间的线性回归方程,证明各指标之间存在良好的线性相关关系.  相似文献   

11.
公路工程中应用固化土制备技术对于工程节约成本、提高施工效率和保证道路施工质量具有应用意义。以无侧限抗压强度为主要评估指标,以固化土主要影响因素为研究对象,研究了工程土壤固化剂的加固效果。找到不同土壤固化剂用量、含水率、细砂掺量、水泥掺量对固化土的影响规律,实现参数优化。  相似文献   

12.
利用水泥作为固化剂,通过搅拌机械在地基深处将软土和固化剂强制搅拌的处治方法在当今工程建设中已得到广泛使用。但对于不同土质,水泥固化效果有所不同,如利用水泥处治含高含水率、富含有机质的软弱土层时,往往出现固化土强度偏低的现象。所以,本文以福建沿海某工地的软土为样本,讨论研究水泥掺量对固化土应力应变特性的影响。  相似文献   

13.
路基土回弹模量对路面设计具有重要意义。采用水泥砂作为路基处治土,通过室内回弹模量试验,基于试验数据,建立水泥砂的回弹模量与压实度、水泥含量的预估方程,为其回弹模量的预估提供参考方法。通过室内试验进行验证,结果表明:实测值与预估值较好吻合。  相似文献   

14.
针对冻土地区的路基填料开展冻融循环试验,分析在冻融循环作用下,路基填料中粉黏粒含量和含水率对路基土回弹模量的影响。研究结果表明:随着粉黏粒的含量的增加,最大干密度表现为先增大后减小的趋势,最大干密度为2.320 g/cm3,对应的粉黏粒含量为12%。粉黏粒含量与最佳含水率呈现线性增加的关系。粉黏粒掺量高对回弹模量的影响较大,粉黏粒掺量低对回弹模量的影响较小。随着含水率的增加,回弹模量逐渐减小。在-5~0℃这个区间范围,土样的回弹模量快递下降,温度对土样的弹性模量显著。当粉黏粒掺量大于12%时,冻融循环和含水率对回弹模量折减系数影响较大,当粉黏粒掺量为9%时,冻融循环和含水率对回弹模量折减系数影响基本没有影响。  相似文献   

15.
试验选用Ca(OH)2为激发剂,通过室内无侧限抗压强度试验设计掺超细矿粉水泥土配合比。结果表明,固化剂掺量一定时,水泥土无侧限抗压强度随超细矿粉取代率增加逐渐降低,超细矿粉取代率由20%增加至40%时,抗压强度降低显著,为20. 6%;水泥掺量对超细矿粉水泥土无侧限抗压强度影响效果最显著,氢氧化钙掺量次之,当水泥掺量≥6%或氢氧化钙掺量≥0. 6%时,抗压强度提高幅度较小;当超细矿粉掺量≥4%时,超细矿粉掺量增加1%,其抗压强度提高8. 1%以上。建议超细矿粉水泥土室内最佳配合比为水泥掺量6%、超细矿粉掺量8%、氢氧化钙掺量为0. 6%。  相似文献   

16.
基于固化剂、油石比和含水率对冷拌冷铺混合料性能的影响,研究分析了掺固化剂的冷拌冷铺混合料的微观结构和硬化机理。结果表明:含硫铝酸钙型固化剂的冷拌冷铺混合料比掺PO52. 5水泥的冷拌冷铺混合料的性能优越,前者4 h抗压强度和抗折强度分别是后者的2倍和1. 6倍,两者皆以固化剂掺量5. 5%、油石比5. 5%、含水率4%为最佳配合比;与PO52. 5水泥相比,含硫铝酸钙型固化剂形成钙矾石固相可吸收更多水分,从而加速乳化沥青破乳,其水化产物能改善冷拌冷铺混合料的微观网络结构。  相似文献   

17.
所谓土壤固化处理是指利用水泥、石灰及其作为基质活性材料生产的土壤固化材料(土壤固化剂)、高分子类土壤固化剂与现状软弱路基土通过机械进行搅拌混合处理,以改善其性状、适宜的刚度、高的稳定性的施工方法。  相似文献   

18.
为了优化新型固化土配合比,本文进行了多试验组固化土无侧限抗压强度试验,主要试验参数为:固化剂掺量、水泥用量、粉煤灰用量等。试验结果表明:性价比最高的配合比为:水泥∶粉煤灰∶中砂∶碎石∶土∶固化剂∶水=100∶50∶175∶350∶1225∶1.5∶85,该配合比可用于工程实际,具备良好的经济效益和社会效益。  相似文献   

19.
为有效改善高含水率粉土路基工程力学性质,同时节约工程造价,采用草木灰+石灰混掺方式对高含水率粉土进行了改良实验。结果表明:草木灰和石灰均对粉土具有降水作用,但石灰的效果优于草木灰,两者混掺时,草木灰可起到分散的作用,从而提升降水效果;当草木灰掺量为15%,石灰掺量为4%时,对高含水率粉土的改良效果最好,相比素粉土,粘聚力、内摩擦角和单轴抗压强度分别提升800%、19.4%和300%;固化改良之后的粉土在碾压2遍后,压实度>94%,可满足上、下路基的压实度要求,碾压5遍后,压实度>96%,可满足上、下路床的压实度要求。  相似文献   

20.
赤泥与钢渣是冶金工业中大量产生的固体废弃物,如无法高效利用,会造成环境问题和土地问题。提出一种由水泥、赤泥和钢渣组成的复合软土固化剂,该固化剂利用赤泥的高碱性和水泥水化产生的碱性环境激发钢渣的活性,并利用赤泥增补体系中的活性铝酸盐成分。通过无侧限抗压强度试验发现,当固化剂中的水泥、赤泥和钢渣比例为50∶25∶25时,经该复合固化剂固化的软土强度达到了水泥固化土的88.8%。通过压汞试验研究固化土微观性质发现,随着水泥、赤泥和钢渣比例的变化,固化土中的孔隙分布也发生了变化:水泥固化土中的大孔隙、中孔隙相对含量最少;当固化剂中水泥、赤泥和钢渣比例为50∶25∶25时,经其固化的固化土比固化剂中水泥、赤泥和钢渣比例为50∶15∶35时的固化土中的大孔隙、中孔隙相对含量少,因而导致了固化土强度的变化。通过XRD(X射线衍射)谱图发现∶固化剂中水泥、赤泥和钢渣比例为50∶25∶25 时,水化反应最为彻底。将这种固化剂应用于地基加固中,既实现了废弃物的再利用,又可以减少地基加固中水泥的用量,节约成本,具有良好的经济效益和环境效益。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号