首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
To better understand bicyclists’ preferences for facility types, GPS units were used to observe the behavior of 164 cyclists in Portland, Oregon, USA for several days each. Trip purpose and several other trip-level variables recorded by the cyclists, and the resulting trips were coded to a highly detailed bicycle network. The authors used the 1449 non-exercise, utilitarian trips to estimate a bicycle route choice model. The model used a choice set generation algorithm based on multiple permutations of path attributes and was formulated to account for overlapping route alternatives. The findings suggest that cyclists are sensitive to the effects of distance, turn frequency, slope, intersection control (e.g. presence or absence of traffic signals), and traffic volumes. In addition, cyclists appear to place relatively high value on off-street bike paths, enhanced neighborhood bikeways with traffic calming features (aka “bicycle boulevards”), and bridge facilities. Bike lanes more or less exactly offset the negative effects of adjacent traffic, but were no more or less attractive than a basic low traffic volume street. Finally, route preferences differ between commute and other utilitarian trips; cyclists were more sensitive to distance and less sensitive to other infrastructure characteristics for commute trips.  相似文献   

2.
In a case study of a Norwegian heavy-duty truck transport company, we analyzed data generated by the online fleet management system Dynafleet. The objective was to find out what influenced fuel consumption. We used a set of driving indicators as explanatory variables: load weight, trailer type, route, brake horsepower, average speed, automatic gearshift use, cruise-control use, use of more than 90% of maximum torque, a dummy variable for seasonal variation, use of running idle, use of driving in highest gear, brake applications, number of stops and rolling without engine load. We found, via multivariate regression analysis and corresponding mean elasticity analysis, that with driving on narrow mountainous roads, variables associated with infrastructure and vehicle properties have a larger influence than driver-influenced variables do. However, we found that even under these challenging infrastructure conditions, driving behavior matters. Our findings and analysis could help transport companies decide how to use fleet management data to reduce fuel consumption by choosing the right vehicle for each transportation task and identifying environmentally and economically benign ways of driving.  相似文献   

3.
This paper evaluates the effectiveness of feedback, based on In-Vehicle Data Recorders (IVDR), to improve driving behavior, increase driving safety, and reduce fuel consumption. We developed a framework for driving-behavior measurement, incorporating second-by-second data collected by IVDRs. IVDR units were installed in over 150 vehicles driven by more than 350 drivers for over a year. The experiment was divided into three stages. The first stage was a “blind”, control stage, with no feedback. The second stage incorporated verbal feedback given only to riskiest drivers. In the third stage all drivers received a bi-weekly written report about their driving performance. Safety events, such as braking, lateral acceleration or speeding, were recorded. Supplementary data regarding safety related events and fuel consumption were also collected. Safety incidents and fuel consumption were modeled as a function of IVDR measurement-based events, in order to identify which events best reflect safety incidents and excessive fuel consumption. Our results show that braking events best explain safety incidents, and all events together best explain fuel consumption. In addition, we found that for the riskiest drivers, feedback significantly reduced the IVDR events. Our models show that feedback can lead to a reduction of 8% in safety incidents, and 3–10% in fuel consumption, with a larger reduction obtained for large vehicles.  相似文献   

4.
Energy costs account for an important share of the total costs of urban and suburban bus operators. The purpose of this paper is to expand empirical research on bus transit operation costs and identify the key factors that influence bus energy efficiency of the overall bus fleet of one operator and aid to the management of its resources.We estimate a set of multivariate regression models, using cross-section dataset of 488 bus drivers operating over 92 days in 2010, in 87 routes with different bus typologies, of a transit company operating in the Lisbon’s Metropolitan Area (LMA), Rodoviária de Lisboa, S.A.Our results confirm the existence of influential variables regarding energy efficiency and these are mainly: vehicle type, commercial speed, road grades over 5% and bus routes; and to a lesser extent driving events such as: sudden longitudinal decelerations and excessive engine rotation. The methodology proved to be useful for the bus operator as a decision-support tool for efficiency optimization purpose at the company level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号