首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
This paper presents results obtained with MIRO&CO-3D, a biogeochemical model dedicated to the study of eutrophication and applied to the Channel and Southern Bight of the North Sea (48.5°N–52.5°N). The model results from coupling of the COHERENS-3D hydrodynamic model and the biogeochemical model MIRO, which was previously calibrated in a multi-box implementation. MIRO&CO-3D is run to simulate the annual cycle of inorganic and organic carbon and nutrients (nitrogen, phosphorus and silica), phytoplankton (diatoms, nanoflagellates and Phaeocystis), bacteria and zooplankton (microzooplankton and copepods) with realistic forcing (meteorological conditions and river loads) for the period 1991–2003. Model validation is first shown by comparing time series of model concentrations of nutrients, chlorophyll a, diatom and Phaeocystis with in situ data from station 330 (51°26.00′N, 2°48.50′E) located in the centre of the Belgian coastal zone. This comparison shows the model's ability to represent the seasonal dynamics of nutrients and phytoplankton in Belgian waters. However the model fails to simulate correctly the dissolved silica cycle, especially during the beginning of spring, due to the late onset (in the model) of the early spring diatom bloom. As a general trend the chlorophyll a spring maximum is underestimated in simulations. A comparison between the seasonal average of surface winter nutrients and spring chlorophyll a concentrations simulated with in situ data for different stations is used to assess the accuracy of the simulated spatial distribution. At a seasonal scale, the spatial distribution of surface winter nutrients is in general well reproduced by the model with nevertheless a small overestimation for a few stations close to the Rhine/Meuse mouth and a tendency to underestimation in the coastal zone from Belgium to France. PO4 was simulated best; silica was simulated with less success. Spring chlorophyll a concentration is in general underestimated by the model. The accuracy of the simulated phytoplankton spatial distribution is further evaluated by comparing simulated surface chlorophyll a with that derived from the satellite sensor MERIS for the year 2003. Reasonable agreement is found between simulated and satellite-derived regions of high chlorophyll a with nevertheless discrepancies close to the boundaries.  相似文献   

2.
Processing SeaWiFS (Sea-viewing Wide Field-of-view Sensor) data provides useful information for the observation and modelling of the phytoplankton production of the Bay of Biscay. Empirical algorithms allow the retrieval of chlorophyll a and non-living Suspended Particulate Matter (SPM) concentrations. These data are used to constrain a coupled 3D physical–biogeochemical model of the Bay of Biscay continental shelf. Two issues are investigated, depending on the variable used, to constrain the winter to spring phytoplankton production for the year 2001. First, SPM data is used as forcing data to correct the corresponding state variable of our model. This allows the realistic simulation of the light limited bloom at the end of February 2001, as observed with SeaWiFS chlorophyll a images and from the NUTRIGAS field cruise. Second, chlorophyll a data is used for parameter estimation of the biogeochemical model. The ability of assimilating these data is tested to improve the simulation of strong blooms observed in late May 2001 in the Loire and Gironde plumes. A global optimization method (Evolutive Strategies) is adapted to the complete 3-D coupled model, in order to find the best set of parameters. The hydrological conditions during the bloom can be validated with data from the PEL01 field cruise. After selection of the most sensitive parameters, the method is tested with twin experiments. Then, the use of real SeaWiFS data reduces the model/data misfit by a factor of two, improving the simulation of bloom intensities and extensions. The sets of parameters retrieved in each plume are discussed.  相似文献   

3.
The onset of spring bloom in temperate areas is a transition period where the low productive, winter phytoplankton community is transformed into a high productive spring community. Downwelling irradiance, mixing depth and the ability of the phytoplankton community to utilize the light, are key parameters determining the timing of the onset of the spring bloom. Knowing these parameters would thus provide tools for modeling the spring bloom and enhance our knowledge of ecophysiological processes during this period.Our main objective with this study was to provide data for the growth characteristics of some key species forming the spring bloom in the Gulf of Finland, and to apply those results in a simple dynamic model for the onset of the spring bloom, in order to test if the timing of the spring bloom predicted by the models corresponds to field observations. We investigated the photosynthetic characteristics of three diatoms and two dinoflagellates (Chaetoceros wighamii, Melosira arctica, Thalassiosira baltica, Scrippsiella hangoei and Woloszynskia halophila), at low temperatures (4–5 °C). All of these species are common during spring bloom in the Baltic Sea.Cultures of these species were acclimated to different irradiance regimes prior to measurements of photosynthesis, respiration, pigment concentration and light absorption. We did not find a positive relationship between respiration and growth rate, and we hypothesize that this relationship, which is well established at higher temperatures, is negligible or absent at low temperatures (< 10 °C). Photosynthetic maximum (Pm), and maximum light utilization coefficient (α) was lowest and respiration (R) highest in the dinoflagellates.We made a model of the onset of the spring bloom in the western part of Gulf of Finland, using the obtained data together with monitoring data of mixing depth and water transparency from this area. Model results were compared to field observations of chlorophyll-a (Chl-a) concentration. There was a good agreement between the model predictions and the observed onset of the spring bloom for the diatoms. S. hangoei, however, was not able to reach positive production in the model, and W. halophila had the similar growth characteristics as S. hangoei. Consequently, these species must have other competition strategies enabling them to exist and grow during spring bloom.  相似文献   

4.
Data collected during the Continuous Plankton Recorder (CPR) survey has been used to validate a three-dimensional hydrodynamic ecosystem model simulation of the North-west European Shelf for the years 1988–89. The CPR time series is unique to the North Atlantic region as a validation tool. Data were extracted from the model to correspond with those collected by the CPR survey, and both the model and survey plankton data were standardised to allow the comparison of model biomass with survey counts. Simple linear regression and absolute error maps provide a qualitative evaluation of spatio-temporal model performance of simulated diatoms, flagellates, total phytoplankton and omnivorous mesozooplankton. Comparisons of z-scores indicate that the model reproduces the main pelagic seasonal features, and there is good correlation between magnitudes of these features with respect to standard deviations from a long-term mean. The model is replicating up to 62% of the mesozooplankton seasonality across the domain, with variable results for the phytoplankton. There are, however, differences in the timing of patterns in plankton seasonality. The validation exercise has highlighted that the spring diatom bloom in the model is too early, suggesting the need to reparameterise the response of phytoplankton to changing light levels in the model. Errors in the north and west of the domain imply that model turbulence and vertical density structure need to be improved to more accurately capture plankton dynamics.  相似文献   

5.
Few marine phytoplankton have heteromorphic life cycles and also often dominate the ecosystems in which they occur. The class Prymnesiophyceae contains a notable exception: the genus Phaeocystis includes three species that form gelatinous colonies but also occur within their ranges as solitary cells. Phaeocystis antarctica and P. pouchetii are exclusively high latitude taxa, and are notable for regionally tremendous blooms of the colony stage. P. globosa occurs circumglobally, yet its colony blooms primarily are confined to colder waters within its range. Three additional species are warm water forms that have been reported only as solitary cells or loose aggregations that bear little resemblance to the organized colonies of the other taxa. Interpretation of existing data indicates that resource availability (light, temperature and nutrients) by itself is not sufficient to explain this distinction between cold-water colony-forming taxa and warm water solitary cell taxa, nor why colony development in P. globosa is essentially a spatially restricted phenomenon within a much broader geographic range. Colony development by P. globosa in situ has been observed at temperatures ≥20 °C, but only rarely and generally under conditions of seasonally or anthropogenically elevated nutrient supply. Data presented here demonstrate colony development at 20–22 °C in natural plankton communities from oligotrophic waters that were pre-screened through 63 μm mesh (i.e. lacking mesozooplankton and large microzooplankton), but not in unscreened communities containing microzooplankton and >63 μm zooplankton. Reduction of colony proliferation at higher temperatures by mesozooplankton grazing remains as an intriguing possibility that is consistent with available evidence to help explain differences in latitudinal extent of in situ colony development. These data are interpreted within a theoretical framework regarding the potential advantages and disadvantages of the two life cycle stages.  相似文献   

6.
During the late austral summer of 1994, Antarctic waters were characterized by low phytoplankton biomass. Along the 62°E meridian transect, between 49°S and 67°S, chlorophyll (Chl.) a concentration in the upper 150 m was on average 0.2 mg m−3. However, in the Seasonal Ice Zone (SIZ) chlorophyll a concentrations were higher, with a characteristic deep chlorophyll maximum. The highest value (0.6 mg Chl. a m−3) was measured at the Antarctic Divergence, 64°S, corresponding to the depth of the temperature minimum (100 m). This deep biomass maximum decreased from South to North, disappeared in the Permanently Open Ocean Zone (POOZ) and reappeared with less vigour in the vicinity of the Polar Front Zone (PFZ). In the SIZ, the upper mixed layer was shallow, biomass was higher and the >10 μm fraction was predominant. In this zone the >10 μm, 2–10 μm and <2 μm size fractions represented on the average 46%, 25.1% and 28.9% of the total integrated Chl. a stock in the upper 100 m, respectively. The phytoplankton assemblage was diverse, mainly composed of large diatoms and dinoflagellate cells which contributed 42.7% and 33.1% of the autotrophic carbon biomass, respectively. Moving northwards, in parallel with the decrease in biomass, the biomass of autotrophic pico- and nanoflagellates (mainly Cryptophytes) increased steadily. In the POOZ, the picoplanktonic size fraction contributed 47.4% of the total integrated Chl. a stock. A phytoplankton community structure with low biomass and picoplankton-dominated assemblage in the POOZ contrasted with the relatively rich, diverse and diatom-dominated assemblage in the SIZ. These differences reflect the spatial and temporal variations prevailing in the Southern Ocean pelagic ecosystem.  相似文献   

7.
We have evaluated the impact of assimilating chlorophyll, nitrate, phosphate, silicate and ammonium into a coupled 1D hydrodynamic ecosystem model (GOTM-ERSEM) in an upwelling influenced estuary. The assimilation method chosen is the Ensemble Kalman Filter (EnKF), which has been demonstrated to improve field estimates of key variables (chlorophyll, nutrients) for bulk algal bloom prediction. The 1D model has been set up for a central station inside the Ría de Vigo (Spain). Data from bi-weekly surveys are used to constrain the model. Temperature and salinity profiles are used to ensure the correct representation of the water structure through a relaxation scheme. Chlorophyll extracts and nutrients at three depths are assimilated sequentially during 1 year simulation (1991). The assimilation period includes episodes of active upwelling and downwelling. All five assimilated variables are successfully constrained and represent a large improvement on the reference simulation (without assimilation). Small divergences can be related to poorly resolved physical processes in the model. The assimilation was further evaluated by comparing observed biomass partitioning with model results. Diatoms accounted for the largest biomass update and the largest improvement in terms of percentage of variance explained (R2). This is particularly significant as they represent the 46% of the yearly integrated observed biomass of the planktonic autotrophs. Nonetheless the R2 value was low for all phytoplankton groups. Bacteria and nanoflagellates showed an improvement with respect to their yearly Root Mean Square (RMS), while the other functional groups worsen or remained unaffected. Chlorophyll assimilation was responsible for most of the impact on the phytoplankton biomass with small contributions from the silicate. It had minor impact on the updates of nutrients which in turn corrected the state variables related to the detrital pool. In this current setting, combined assimilation of chlorophyll and nutrients is not sufficient to produce a skillful simulation of the phytoplankton succession.  相似文献   

8.
The changes in the environmental features of the Yellow Sea during the last 25 years of the 20th century were studied using a set of seasonally monitored data along a transect (at 36°N) maintained by the State Oceanic Administration of China. The data included the ocean temperature (T), salinity (S) and biogenic elements, such as dissolved oxygen (DO), phosphorus (PO4-P), silicon (SiO3-Si) and dissolved inorganic nitrogen (DIN).The seasonal (summer and winter) values and the annual mean of these elements showed significant changes during the monitored period. Time series of T, S, DIN and N:P ratios exhibited positive trends, while those of DO, P and Si exhibited negative trends. During this period, the annual mean of T and DIN in the Yellow Sea increased by 1.7 °C and 2.95 μmol L−1, respectively, while those of DO, P and Si decreased by 59.1, 0.1 and 3.93 μmol L−1, respectively. In the 1980s, particularly in between 1985 and 1989, concentrations of P and Si dropped to near the ecological threshold for growth of diatoms. The N:P ratio increased from 4 in 1984 to over 16 in 2000. The climate trend coefficients, Rxt, for these time series are all above 0.43 with significance levels of 95%, except for salinity. The increases in T were consistent with the recent climate warming in northern China and the adjacent seas, i.e. the Bohai Sea and the East China Sea. The reduction of DO was probably attributable to the increase in T and decrease in primary production in these regions. The positive trend of DIN was mainly attributable to precipitation and partly to Changjiang River discharge. The negative concentration trends of P and Si were due to the decreases in their concentrations in seawater that flowed to the Yellow Sea from the Bohai Sea. As a result, N:P ratios greatly increased in the seawater of the Yellow Sea.Moreover, some important responses of the Yellow Sea ecosystems to the changes in physical variables and chemical biogenic elements were obviously displayed. These responses include strengthening nutrient limitation, decreasing chlorophyll a, primary production and phytoplankton abundance, succession of dominant phytoplankton species from diatoms to non-diatoms, changes in fish community structure and species diversity.  相似文献   

9.
In this study we propose a model of phytoplankton population dynamics in the marine ecosystem, which includes physical, biological and bio-optical parts. As an example we simulate the abnormal 1993 Gulf of Gdansk spring bloom, when extremely high chlorophyll concentrations were observed. For the one-dimensional model we use two different methods of contact chlorophyll observation assimilation to fit a model of “in situ” data. The results are compared with two-dimensional ecosystem modelling based on a barotropic model of wind-driven circulation without assimilation.  相似文献   

10.
During a repeat grid survey and drogue study carried out in austral summer 1994/95, the abundance and feeding activity of salps were estimated in the Lazarev Sea region from net tows and in situ measurements of gut fluorescence. Throughout the survey area, Salpa thompsoni accounted for >95% of the total salp stock while Ihlea racovitzai was consistently represented in very low abundances. Maximum densities of S. thompsoni, with ≈4000 ind. 1000 m−3, were recorded in the Marginal Ice Zone (MIZ) in December when chlorophyll-a concentrations were well below 1 mg m−3. A dramatic decrease in salp stock was observed at the beginning of January, when S. thompsoni virtually disappeared from the most productive area of the MIZ where chlorophyll-a concentrations had by then reached bloom levels of 1.5–3 mg (Chl-a) m−3. In situ grazing measurements showed that throughout the cruise S. thompsoni exhibited the highest ingestion rates per individual of any of the most abundant components of the grazing pelagic community, with maxima of ≈160 μg (pigm) ind. −1 d−1. These feeding rates are 3 to 5 times higher than those previously obtained using in vitro incubations. The total daily consumption of the population of S. thompsoni varied from 0.3 to 108% of daily primary production. We suggest that competitive removal of food by S. thompsoni, rather than direct predation, is responsible for the low krill abundances generally associated with salp swarms.  相似文献   

11.
周然 《水道港口》2012,33(1):72-76
根据2004~2007年的调查数据,结合以往资料,分析了近20 a来天津港海域浮游植物种类、丰度、生物量及多样性的变化规律及其影响因素。结果表明,天津港海域共有浮游植物7门126种,以硅藻和甲藻为主。2000年后,夏季甲藻比例升高,绿藻开始出现。与20世纪90年代相比,2000年后浮游植物的丰度和生物量均维持在较高水平,表现为春季达到重度富营养水平,夏季为中营养水平。浮游植物多样性在2005年呈现下降趋势。研究表明,港口航道工程可能是影响天津港海域浮游植物种群变化的重要原因。  相似文献   

12.
The vertical and horizontal distribution of mesozooplankton biomass and its composition, together with the reproduction and development of the three dominant herbivorous copepods Calanus finmarchicus, C. glacialis and C. hyperboreus, were studied in the Northeast Water between the end of May and end of July, 1993. Biomass varied between 0.15 and 10.6 g m−2 and was lower on the shallow banks. Highest biomass was found on the shelf slope and in the entrances to Belgica and Westwind Troughs. There was no seasonal trend during the study period. Among the zooplankton taxa, copepods were dominant, with 84% biomass of all other taxa, followed by chaetognaths with 14%. The large Calanus species made up 91% of copepod biomass. The most abundant species, C. glacialis, inhabited areas of low current speeds on Belgica and Ob Bank, C. hyperboreus dominated shelf slope and trough stations, while C. finmarchicus was most abundant in the Return Atlantic Current along the shelf slope and also eastern Belgica Trough. C. glacialis was the only Calanus species spawning during this period, but young copepodites of the other species were also abundant. Egg production of C. glacialis was at a maximum by our arrival and continued to at least mid August. According to the results from starvation experiments, its egg production was fuelled by food uptake, but was decoupled from phytoplankton chlorophyll until July, indicating ice-algae and microzooplankton as an alternative food source. Only when the polynya approached its maximum extent was a close relationship to phytoplankton established. Due to both spatial and temporal heterogeneity of the occurrence of young copepodite stages it was impossible to follow the growth of cohorts of developmental stages. Herbivorous carbon requirements estimated from egg production rates were mostly less than one third of the phytoplankton stock. From egg production and the distribution of young stages, the outer Westwing Trough seems to be the centre of biological activities. This may be related to the formation of young ice in winter in this area, which was found to carry a large mass of under-ice algae. High biomass but low production in Belgica Trough indicate this as an advective and expatriated community of C. finmarchicus and C. hyperboreus, where grazing is negligible, at least during early summer.  相似文献   

13.
It has been known for decades that particle-size and biomass spectra show regular patterns in the ocean, and that these patterns often show systematic variations with other properties such as total biomass, nutrient concentration, season, and distance (both vertical and horizontal). The recent finding of the ubiquitous nature of layers of phytoplankton < 1 m thick prompted us to explore the fine- and microscale vertical variations of size- and fluorescence-abundance spectra in the ocean. Using a two-dimensional planar laser imaging system mounted on a free-falling platform, we quantified the properties of large fluorescent particles ( 20 μm–2 cm) through the water column, obtaining images every 10–30 cm. These images showed systematic relationships of the spectral properties to total chlorophyll: increased proportions of the smallest particles at high chlorophyll concentrations, and a lengthening of the spectral size range at high total chlorophyll concentrations (more large particles at high chlorophyll concentrations). Further, we observed significant variations of the spectral properties over scales of 1 m and less, and recorded the frequent occurrence of unusual layers of large particles. Our new instrument, which is sensitive to thin layers of enhanced phytoplankton biomass, shows the planktonic community to be highly structured vertically on scales of 1–2 m, particularly within the DCM.  相似文献   

14.
The upper water column in the Irminger Sea is characterized by cold fresh arctic and subarctic waters and warm saline North Atlantic waters. In this study the local physical and meteorological preconditioning of the phytoplankton development over an annual cycle in the upper water column in four physical zones of the Irminger Sea is investigated. Data from four cruises of the UK's Marine Productivity programme are combined with results from a coupled biological–physical nitrogen–phytoplankton–zooplankton–detritus model run using realistic forcing. The observations and model predictions are compared and analyzed to identify the key parameters and processes which determine the observed heterogeneity in biological production in the Irminger Sea. The simulations show differences in the onset of the bloom, in the time of the occurrence of the maximum phytoplankton biomass and in the length of the bloom between the zones. The longest phytoplankton bloom of 90 days duration was predicted for the East Greenland Current of Atlantic origin zone. In contrast, for the Central Irminger Sea zone a phytoplankton bloom with a start at the beginning of May and the shortest duration of only 70 days was simulated. The latest onset of the phytoplankton bloom in mid May and the latest occurrence of the maximum biomass (end of July) were predicted for the Northern Irminger Current zone. Here the bloom lasted for 80 days. In contrast the phytoplankton bloom in the Southern Irminger Current zone started at the same time as in Central Irminger Sea, but peaked end of June and lasted for 80 days. For all four zones relatively low daily (0.3–0.5 g C m− 2d− 1) and annual primary production was simulated, ranging between 35.6 g C m− 2y− 1 in the East Greenland Current of Atlantic origin zone and 45.6 g C m− 2y− 1 in the Northern Irminger Current zone. The model successfully simulated the observed regional and spatial differences in terms of the maximum depth of winter mixing, the onset of stratification and the development of the seasonal thermocline, and the differences in biological characteristics between the zones. The initial properties of the water column and the seasonal cycle of physical and meteorological forcing in each of the zones are responsible for the observed differences during the Marine Productivity cruises. The timing of the transition from mixing to stratification regime, and the different prevailing light levels in each zone are identified as the crucial processes/parameters for the understanding of the dynamics of the pelagic ecosystem in the Irminger Sea.  相似文献   

15.
Absolute values of chlorophyll a concentration and its spatial and seasonal variations in the Black Sea were assessed by using satellite CZCS and in situ data. Since the satellite CZCS had operated for the 1978–1986 period, CZCS data was used for assessing the past state of the Black Sea just before the onset of drastic changes observed in late 1980s. The approach used for the calculation of the absolute values of chlorophyll a concentration from CZCS data was based on the direct comparison of in situ chlorophyll a data and those of CZCS and by applying the algorithm developed for the transformation of CZCS data into chlorophyll a values. CZCS Level 2 data related with pigment concentration having a spatial resolution of 1 km at nadir were used. The daily Level 3 files were derived by binning Level 2 values into 4-km grid cells and the monthly and seasonal Level 3 files were created by averaging the daily Level 3 files over the corresponding period. In situ chlorophyll a data were obtained by spectrophotometric and fluorometric methods in 15 scientific cruises over the 1978–1986 period. Total number of ship-measured data used for the comparison with those CZCS values was 590.Chlorophyll a concentration (Chl) was derived from CZCS values (C) with regression equations Chl=kC; the coefficient of transformation k was calculated from six different data sets by taking into account distinctions between subregions and seasons. The reasons for difference in the k values have been analyzed.Statistical comparison of the chlorophyll a values measured in situ and those derived from CZCS data was based on log-transformed data and gave the following results: regression SLOPE=0.842, regression INTERCEPT=−0.081, coefficient of determination (R2)=0.806, root–mean–square ERROR=0.195. The mean monthly chlorophyll a distributions derived from CZCS data over 1978–1986 have been constructed and the mean seasonal chlorophyll a values in different regions have been calculated and analyzed. The significant difference in chlorophyll concentration between the western shelf regions and the open part of the Black Sea has been demonstrated, especially in warm season. At almost all seasons, the highest chlorophyll concentration is observed in the western interior shelf region which is under strong influence of Danube. The summer mean chlorophyll concentration in this region is 18 times higher than that in the open parts and about nine times higher than in the eastern shelf region. The greatest seasonal variations are observed in the open part of the Black Sea: chlorophyll concentration in cold season is four to six times higher than in summer and three to five times higher than in April and October. To the contrary, in the western interior shelf regions, the concentration is higher in May–October (about twice than that in November–March). Seasonal variations in the western outer shelf regions are smoothed out as compared with both the western interior shelf and the open regions.  相似文献   

16.
Production of the marine calanoid copepod Acartia omorii was measured from 2 October 1991 to 8 October 1992 at a station in Ilkwang Bay on the southeastern coast of Korea. A. omorii (nauplii + copepodites + adults) were present in the plankton throughout the year, with seasonal variation in abundance. Biomass of A. omorii was averaged at 0.44 mgC m− 3, with peaks in February and July, and relatively low biomass in late summer and fall. Egg production rate ranged from 2.4 to 151.9 μgC m− 3 day− 1, which was equivalent to 95–6075 eggs m− 3 day− 1. Fecundity of an adult female was averaged at 38 eggs female− 1 day− 1. Instantaneous growth rates of copepodites were higher than those of nauplii stages. Annual production of A. omorii ranged from 33.5 mgC m− 3 year− 1 to 221 mgC m− 2 year− 1, showing a seasonal variation of daily production rate with peaks in February and July. The daily production rate of A. omorii was significantly correlated with chlorophyll a concentration. These results suggest that standing stocks and/or productivity of phytoplankton are the major influencing factors, rather than water temperature for the seasonal variation of production of A. omorii in Ilkwang Bay.  相似文献   

17.
In many parts of the world coastal waters with anthropogenic eutrophication have experienced a gradual depletion of dissolved silica (DSi) stocks. This could put pressure on spring bloom diatom populations, e.g. by limiting the intensity of blooms or by causing shifts in species composition. In addition, eutrophication driven enhanced diatom growth is responsible for the redistribution of DSi from the water phase to the sediments, and changes in the growth conditions may be reflected in the sediment diatom stratigraphy.To test for changes in diatom communities we have analyzed four sediment cores from the Baltic Sea covering approximately the last 100 years. The sediment cores originate from the western Gulf of Finland, the Kattegat, the Baltic Proper and the Gulf of Riga. Three out of the four cores reveal only minor changes in composition of diatom assemblages, while the Gulf of Riga core contains major changes, occurring after the second World War. This area is set apart from the other Baltic Sea basins by a high frequency of low after spring bloom DSi concentrations (< 2 µmol L− 1) during a relatively well defined time period from 1991–1998. In 1991 to 1993 a rapid decline of DSi spring concentrations and winter stocks (down to 5 µmol L− 1) in the Gulf was preceded by exceptionally intense diatom spring blooms dominated by the heavily silicified species Thalassiosira baltica (1991–1992; up to 5.5 mg ww L− 1). T. baltica has been the principal spring bloom diatom in the Gulf of Riga since records began in 1975. DSi consumption and biomass yield experiments with cultured T. baltica suggest that intense blooms can potentially exhaust the DSi stock of the water column and exceed the annual Si dissolution in the Gulf of Riga. The phytoplankton time series reveals another exceptional T. baltica bloom period in 1981–1983 (up to 8 mg L− 1), which, however, took place before the regular DSi measurements. These periods may be reflected in the conspicuous accumulation of T. baltica frustules in the sediment core corresponding to ca. 1975–1985.  相似文献   

18.
Seasonal SeaWiFS chlorophyll a concentrations cycles and annual changes of altimeter Sea Level Anomaly are derived for the subtropical North Atlantic near  35°N and along a Gulf Stream axis. Spatial structure of SeaWiFS, is defined in terms of deviations from a local seasonal cycle and examined in relation to altimeter eddy structure. In the subtropical region near 35°N, SeaWiFS structure is evident during the spring bloom period with a scale of  430 km, or about twice the eddy scale. A Gulf Stream axis has been selected as a region where the Sea Level Anomaly variance is a maximum. Eddy propagation speeds and scales are examined. Cold-core (cyclonic) rings correspond to areas of high SeaWiFS chlorophyll a. Warm-core (anticyclonic) rings relate to areas of low chlorophyll concentration. Both SeaWiFS structure and eddy structure have a spatial scale of  450 km or twice the ring scale along the Gulf Stream axis. SeaWiFS chlorophyll anomalies and Altimeter Sea Level Anomaly structure have an overall negative correlation coefficient of r = − 0.34. Swirl currents between eddies redistribute surface chlorophyll concentrations and can spatially bias maximum and minimum concentration levels off eddy centre.  相似文献   

19.
The species composition, abundance, and biomass of micro- (>15 μm) and nano- (<15 μm) phytoplankton were studied along the southern Black Sea during June–July 1996 and March–April and September 1998. A total of 150 species were identified, 50% of them being dinoflagellates. The average total phytoplankton abundance changed from 77×103 cells l−1 in spring to 110×103 cells l−1 in autumn and biomass from 250 μg l−1 in summer to 1370 μg l−1 in spring. Based on the extensive sampling grid from June–July 1996, phytoplankton seemed to have a rather homogeneous biomass distribution in the southern Black Sea. In all periods, the coccolithophorid Emiliania huxleyi was the most abundant species, its contribution to the total abundance ranging from 73% in autumn to 43% in spring. However, in terms of biomass, diatoms made up the bulk of phytoplankton in spring (97%, majority being Proboscia alata) and autumn (73%, majority being Pseudosolenia calcar-avis), and dinoflagellates in summer (74%, Gymnodinium sp.). There was a remarkable similarity in the dominant species between the western and eastern regions of the southern Black Sea, indicating transport of phytoplankton within the basin.  相似文献   

20.
A nutrient–phytoplankton–zooplankton–detritus (1D-NPZD) ‘phytoplankton {Phyt} and Pseudocalanus elongatus {Zoop} dynamics in the spring bloom time in the Gda sk Gulf. The 1D-NPZD model consists of three coupled, partial second-order differential equations of the diffusion type for phytoplankton {Phyt}, zooplankton {Zoop}, nutrients {Nutr} and one ordinary first-order differential equation for benthic detritus pool {Detr}, together with initial and boundary conditions. In this model, the {Zoop} is presented by only one species of copepod (P. elongatus) and {Zoop} is composed of six cohorts of copepods with weights (Wi) and numbers (Zi); where . The calculations were made for 90 days (March, April, May) for two stations at Gda sk Gulf with a vertical space step of 0.5m and a time step of 900 s. The flow field and water temperature used as the inputs in the biological model 1D-NPZD were reproduced by the prognostic numerical simulation technique using hydrographic climatological data. The results of the numerical investigations described here were compared with the mean observed values of surface chlorophyll-a and depth integrated P. elongatus biomass for 10 years, 1980–1990. The slight differences between the calculated and mean observed values of surface chlorophyll-a and zooplankton biomass are ca. 10–60 mg C m−3 and ca. 5–23 mg C m−2, respectively, depending on the location of the hydrographic station. The 1D-NPZD model with a high-resolution zooplankton module for P. elongatus can be used to describe the temporal patterns for phytoplankton biomass and P. elongatus in the centre of the Gda sk Gulf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号