首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heavy fuels are likely to remain the dominant fuel source for two-stroke, low-speed diesel engines for large ship propulsion for the next decade or more. There is however, potential for increased use of pure vegetable oils (PVO) as an alternative and, by emitting lower levels of several pollutants, this can help the attainment of Annex VI of the MARPOL 73/78 convention aimed at large ships using fuels with less than 4.5% sulphur or 1.5% sulphur in SOX emission control areas The use of alternative fuels can also influence the attainment of the Kyoto protocol that requires greenhouse gas emissions to be reduced by 5% by 2010 compared to 1990. This paper analyses the physical and chemical properties of various pure vegetable oils as an alternative to heavy fuel oil for large ship propulsion.  相似文献   

2.
Potential costs and benefits of policy options for reducing offshore ship pollution are examined using a meta-analysis of studies synthesized regionally for the US West Coast. Net benefits of reducing SO2 emissions from cargo ships in the US West Coast waters are found to range between $98 million and $284 million, annually; the benefit–cost ratio varies between 1.8 and 3.36, depending on the size of the control area and the sulfur content limit. The results show that about 21,000 tons of on-land equivalent SO2 emissions or about 33% of SO2 emissions from all mobile sources in California in 2005 can be reduced annually if the US West Coast exclusive economic zone is designated as an International Maritime Organization-compliant SOx emission control area (SECA) with fuel-sulfur content not exceeding 1.5%. The analysis demonstrates that designating this area reduces more emissions than establishing a smaller zone at a lower but favorable benefit-cost ratio. Control measures that require 0.5% low-sulfur fuels reduce more SO2 emissions, and also may have higher net benefits. Technological alternatives may achieve benefits of emissions reductions on the US West Coast across higher ranges of potential fuel prices. Combinations of fuel switching and control technology strategies provide the most cost-effective benefits from SECAs on the US West Coast and other world regions.  相似文献   

3.
This paper examines the influence of compressed natural gas, liquefied petroleum gas and gasoline fuel on the exhaust emissions and the fuel consumption of a spark-ignition engine powered passenger car. The vehicle was driven according to the urban driving cycle and extra urban driving cycle speed profiles with the warmed-up engine. Cause and effect based analysis reveals potential for using different fuels to reduce vehicle emission and deficiencies associated with particular fuels. The highest tank to wheel efficiency and the lowest CO2 emission are observed with the natural gas fuelled vehicle, that also featured the highest total hydrocarbon emissions and high NOx emissions because of fast three way catalytic converter aging due the use of the compressed natural gas. Retrofitted liquefied petroleum gas fuel supply systems feature the greatest air-fuel ratio variations that result in the lowest TtW efficiency and in the highest NOx emissions of the liquefied gas fuelled vehicle.  相似文献   

4.
In 2016, the International Maritime Organization (IMO) decided on global regulations to reduce sulphur emissions to air from maritime shipping starting 2020. The regulation implies that ships can continue to use residual fuels with a high sulphur content, such as heavy fuel oil (HFO), if they employ scrubbers to desulphurise the exhaust gases. Alternatively, they can use fuels with less than 0.5% sulphur, such as desulphurised HFO, distillates (diesel) or liquefied natural gas (LNG). The options of lighter fuels and desulphurisation entail costs, including higher energy consumption at refineries, and the present study identifies and compares compliance options as a function of ship type and operational patterns.The results indicate distillates as an attractive option for smaller vessels, while scrubbers will be an attractive option for larger vessels. For all vessels, apart from the largest fuel consumers, residual fuels desulphurised to less than 0.5% sulphur are also a competing abatement option. Moreover, we analyse the interaction between global SOX reductions and CO2 (and fuel consumption), and the results indicate that the higher fuel cost for distillates will motivate shippers to lower speeds, which will offset the increased CO2 emissions at the refineries. Scrubbers, in contrast, will raise speeds and CO2 emissions.  相似文献   

5.
Abstract

The use of fossil fuels in transportation is an important topic as a result of growing concerns over global warming. Automobile petrol demand has been of particular interest to researchers and policy-makers, given that the automobile is a major contributor to the enhanced greenhouse effect. This paper forecasts Australia's automobile petrol demand up to the year 2020 based on the best performing forecasting model selected out of eight models. In order to establish ways to reduce the demand for petrol, and the consequent by-product of reducing the amount of greenhouse gas emissions, we have estimated the impact on CO2 for several potential policy instruments, using Transportation and Environment Strategy Impact Simulator (an integrated transport, land use and environmental strategy impact simulation programme). We find that a carbon tax of AU$0.50/kg can reduce automobile kilometres by 5.9%, resulting in reduced demand for petrol and a reduction in CO2 of 1.5%.  相似文献   

6.
Reducing energy consumption and controlling greenhouse gas emissions are key challenges for urban residents. Because urban areas are complex and dynamic, affected by many driving factors in terms of growth, development, and demographics, urban planners and policy makers need a sophisticated understanding of how residential lifestyle, transportation behavior, land-use changes, and land-use policies affect residential energy consumption and associated CO2 emissions. This study presents an approach to modeling and simulating future household energy consumption and CO2 emissions over a 30-year planning period, using an energy-consumption regression approach based on the UrbanSim model. Outputs from UrbanSim for a baseline scenario are compared with those from a no-transportation-demand model and an Atlanta BeltLine scenario. The results indicate that incorporation of a travel demand model can make the simulation more reasonable and that the BeltLine project holds potential for curbing energy consumption and CO2 emissions.  相似文献   

7.
This paper investigates how California may reduce transportation greenhouse gas emissions 80% below 1990 levels by 2050 (i.e., 80in50). A Kaya framework that decomposes greenhouse gas emissions into the product of population, transport intensity, energy intensity, and carbon intensity is used to analyze emissions and mitigation options. Each transportation subsector, including light-duty, heavy-duty, aviation, rail, marine, agriculture, and off-road vehicles, is analyzed to identify specific mitigation options and understand its potential for reducing greenhouse gas emissions. Scenario analysis shows that, while California’s 2050 target is ambitious, it can be achieved in transport if a concerted effort is made to change travel behavior and the vehicles and fuels that provide mobility. While no individual ‘‘Silver Bullet” strategy exists that can achieve the goals, a portfolio approach that combines strategies could yield success. The 80in50 scenarios show the impacts of advanced vehicle and fuels technologies as well as the role of travel demand reduction, which can significantly reduce energy and resource requirements and the level of technology development needed to meet the target.  相似文献   

8.
Mitigation of greenhouse gas emissions from transportation has become increasingly important and challenging especially for developing countries. This paper takes the inter-city passenger transport in China as a case, and develops a system dynamics model for policy assessment and CO2 mitigation potential analysis. It is found that the future demand for China’s inter-city passenger transport is expected to be large, with the turnover volume growing at a rate of 9% per annum and amounting to 6600 billion p-km in 2020. Major emissions reduction potential exists in inter-city passenger transport. In 2020, comparing to the case without any specific policies stressing mitigation, the reduction of CO2 emissions ranges from 26% to 32% under those scenarios with policy controls. Sensitivity analysis reveals that the CO2 mitigation will be best achieved by accelerating the development of railway network, together with slowing down the extension of highway network and imposing fuel taxes.  相似文献   

9.
Widespread adoption of plug-in electric vehicles (PEVs) may substantially reduce emissions of greenhouse gases while improving regional air quality and increasing energy security. However, outcomes depend heavily on the electricity generation process, power plant locations, and vehicle use decisions. This paper provides a clear methodology for predicting PEV emissions impacts by anticipating battery-charging decisions and power plant energy sources across Texas. Life-cycle impacts of vehicle production and use and Texans’ exposure to emissions are also computed and monetized. This study reveals to what extent PEVs are more environmentally friendly, for most pollutant species, than conventional passenger cars in Texas, after recognizing the emissions and energy impacts of battery provision and other manufacturing processes. Results indicate that PEVs on today’s grid can reduce GHGs, NOx, PM10, and CO in urban areas, but generate significantly higher emissions of SO2 than existing light-duty vehicles. Use of coal for electricity production is a primary concern for PEV growth, but the energy security benefits of electrified vehicle-miles endure. As conventional vehicle emissions rates improve, it appears that power grids must follow suit (by improving emissions technologies and/or shifting toward cleaner generation sources) to compete on an emissions-monetized basis with conventional vehicles in many locations. Moreover, while PEV pollution impacts may shift to more remote (power plant) locations, dense urban populations remain most strongly affected by local power plant emissions in many Texas locations.  相似文献   

10.
This paper derives the energy efficiencies and CO2 emissions for electric, diesel and hydrogen traction for railway vehicles on a well-to-wheel basis, using the low heating value and high heating value of the enthalpy of oxidation of the fuel. The tank-to-wheel and well-to-tank efficiency are determined. Gaseous hydrogen has a WTW efficiency of 25% low heating value, if produced from methane and used in a fuel cell. This efficiency is similar to diesel and electric traction in the UK, US, and California. A reduction of about 19% in CO2 is achieved when hydrogen gas is used in a fuel cell compared to diesel traction, and a 3% reduction compared to US electricity.  相似文献   

11.
The heavy reliance on petroleum-derived fuels such as gasoline in the transportation sector is one of the major causes of environmental pollution. For this reason, there is a critical need to develop cleaner alternative fuels. Butanol is an alcohol with four different isomers that can be blended with gasoline to produce cleaner alternative fuels because of their favourable physicochemical properties compared to ethanol. This study examined the effect of butanol isomer-gasoline blends on the performance and emission characteristics of a spark ignition engine. The butanol isomers; n-butanol, sec-butanol, tert-butanol and isobutanol are mixed with pure gasoline at a volume fraction of 20 vol%, and the physicochemical properties of these blends are measured. Tests are conducted on a SI engine at full throttle condition within an engine speed range of 1000–5000 rpm. The results show that there is a significant increase in the engine torque, brake power, brake specific fuel consumption and CO2 emissions with respect to those for pure gasoline. The butanol isomers-gasoline blends give slightly higher brake thermal efficiency and exhaust gas temperature than pure gasoline at higher engine speeds. The iBu20 blend (20 vol% of isobutanol in gasoline) gives the highest engine torque, brake power and brake thermal efficiency among all of the blends tested in this study. The isobutanol and n-butanol blend results in the lowest CO and HC emissions, respectively. In addition, all of the butanol isomer-gasoline blends yield lower NO emissions except for the isobutanol-gasoline blend.  相似文献   

12.
The impact of global warming and climate change is the most critical challenge of the 21st century. The greenhouse effect caused by technological development and industrial pollution has accelerated the speed of global warming. To effectively reduce global warming and encourage sustainable enterprise development, a comparative analysis approach is used to examine various domestic automotive products which utilize the up-to-date innovative technology. Their contributions to fuel consumption and emissions of the greenhouse gas, carbon dioxide (CO2), are then investigated. This study focuses on technical innovation in a conventional engine and output power. The results indicate that innovative engines (such as the Ford turbo petrol/diesel engine, the EcoBoost/TDCi) have improved energy consumption and CO2 emissions. In addition, an improvement in output power (such as Toyota hybrid vehicles) has also improved energy consumption and CO2 emissions.  相似文献   

13.
Forest operations use fossil fuels, which should be considered when environmental impact in the wood procurement is of concern. Road freight transportation is the most common operation in timber transportation, and thus is an important source of greenhouse gas emissions. This study assesses the impact of the new larger and heavier vehicles (LHV) on environmental emissions using the synchronized calculation method. The maximum (theoretical) and operational effects of 76 t LHV with calculations made for three weight limits (60, 64 and 68 t) are compared in Finland. Based on Enterprise Resource Planning (ERP) data, environmental energy efficiency (measured in relation to the trip) increased 9.2%. The reduction in fuel consumption was 12.5%, though this is likely to under-estimate the long-term effects that will be achieved when forest operations are fully adjusted to the maximum weight limit. A comparison with the European countries and a preliminary sensitivity analysis of the system demonstrate that the technological development to improve the transporting efficiency is essential for realizing 76 t LHV utilization in Finland.  相似文献   

14.
In addition to fuels, passenger and freight transport require vehicles and infrastructure. As with fuels, the provision of goods and services that are needed for the operation of transport involves the consumption of energy and the emission of greenhouse gases. The energy consumed and greenhouse gases emitted due to fuel use by vehicles are referred to as direct requirements, while indirect requirements of energy and greenhouse gases are embodied in the goods and services mentioned before. Indirect requirements form a significant part of the total energy and greenhouse gases required for a given transport task. They depend on the transport mode, ranging from 10% to 50% for freight transport and from 25% to 65% for passenger transport. These indirect requirements have to be taken into account when options for reducing the energy consumption and greenhouse gas emissions of the transport sector are to be evaluated.  相似文献   

15.
The European Clean Vehicle Directive was introduced in 2009 to create an obligation on public authorities to take into account the impact of energy consumption, carbon dioxide (CO2) emissions and pollutant emissions into their purchasing decisions for road transport vehicles. This should stimulate the market for clean and energy-efficient vehicles and improve transport's impact on environment, climate change and energy use. Therefore the so-called ‘Operational Lifetime Cost’ of a vehicle is calculated, divided into the cost for energy consumption, CO2 and pollutant (nitrous oxide, particulate matter, non-methane hydrocarbons) emissions. In Belgium, a different methodology has been developed to calculate the environmental impact of a vehicle, called ‘Ecoscore’, based on a well-to-wheel approach. More pollutants are included compared to the Clean Vehicle methodology, but also indirect emissions are taken into account. In this paper, both methodologies are compared and used to analyze the environmental performance of passenger cars with different fuel types and from different vehicle segments. Similar rankings between both methodologies are obtained; however, the large impact of energy use (and CO2 emissions) in the Clean Vehicle methodology disadvantages compressed natural gas cars, as well as diesel cars equipped with particulate filters, compared to the Ecoscore methodology.  相似文献   

16.
In this paper, potential natural gas and renewable natural gas supply pathways and natural gas vehicles (NGVs) have been selected and evaluated with regards to well-to-wheel energy expended, greenhouse gas (GHG) emissions, and regulated (air pollutant) emissions. The vehicles included in the evaluation are passenger cars, light-duty vehicles (LDVs), and heavy-duty vehicles (HDVs) for road-transport applications, and a short-range passenger vessel for maritime transport applications. The results show that, compared to conventional fuels, in both transport applications and for all vehicle classes, the use of compressed and liquefied natural gas has a 15–27% GHG emissions reduction effect per km travel. The effect becomes large, 81–211%, when compressed and liquefied renewable natural gas are used instead. The results are sensitive to the type and source of feedstock used, the type of vehicle engine, assumed methane leakage and methane slip, and the allocated energy and environmental digestate credits, in each pathway. In maritime applications, the use of liquefied natural gas and renewable natural gas instead of low sulfur marine fuels results in a 60–100% SOx and 90–96% PM emissions reduction. A 1% methane slip from a dedicated LNG passenger vessel results, on average, in 8.5% increase in net GHG emissions.  相似文献   

17.
A novel methodology that provides more detailed estimates of vehicular polluting emissions is offered, in order to contribute to the improvement and the precision of emission inventories of vehicle sources through the consideration of instantaneous speed changes or acceleration instead of average vehicular speeds. This paper presents the construction and application of an instantaneous emissions model designated hereunder as “Transims’s Snapshots-Based Emissions”, which is set on a Geographic Information System that incorporates instantaneous fuel consumption factors and fuel-based emission factors to attain highest resolution of both, spatial and temporal distribution of vehicular polluting emissions based on traffic simulation through cellular automata with TRANSIMS. This work was applied to the road network of the Mexico City Metropolitan Area as case study. The development of this powerful tool led to obtaining 86,400 maps of the spatial and temporal distribution of vehicular emissions per vehicle circulating on the road network, including the following pollutants: carbon monoxide and carbon dioxide, nitrogen oxides, total hydrocarbons, sulfur oxides, polycyclic aromatic hydrocarbons, black carbon, particles PM10 and PM2.5. The said maps allowed identification with highest level of detail, of the emissions and Hot-spots of fuel consumption. Also, the model permitted to obtain the emissions’ longitudinal profiles of a given vehicle along its route. This study shows that the integration method of the polynomial regression models represents an opportunity for each city to develop more easily and openly its own regional emissions models without requiring deeper programming knowledge.  相似文献   

18.
Road freight transport continues to grow in Germany and generates 6% of the country’s CO2 emissions. In logistics, many decisions influence the energy efficiency of trucks, but causalities are not well understood. Little work has been done on quantifying the potential for further CO2 reduction and the effect of specific activities, such as introducing computer assisted scheduling systems to trucking firms. A survey was survey out and linked fuel consumption to transport performance parameters in 50 German haulage companies during 2003. Emission efficiency ranged from 0.8 tonne-km to 26 tonne-km for 1 kg CO2 emissions. The results show potential for improvements given a low level of vehicle usage and load factor levels, scarce use of lightweight vehicle design, poorly selected vehicles and a high proportion of empty runs. IT-based scheduling systems with telematic application for data communication, positioning and navigation show positive effects on efficiency. Fuel use and transport performance was measured before and after the introduction of these systems.  相似文献   

19.
Abstract

This paper quantifies and evaluates, utilising a ‘bottom-up’ approach, the effect on CO2 emissions of a modal shift from short-haul air travel to high-speed rail (HSR), based on projected passenger movements, between Sydney and Melbourne, Australia during the period 2010–2030. To date, peer-reviewed studies assessing the CO2 emissions from these competing modes of high-speed transportation have been restricted principally to a cross-sectional assessment, with a Eurocentric bias. This present comparative study seeks to address a gap in the literature by assessing, longitudinally, the CO2 emissions associated with the proposed operation of HSR against the ‘business-as-usual’ air scenario between Sydney and Melbourne. Under the assumed 50/50 modal shift, and the Australian government's current renewable electricity target, an annual reduction in CO2 emissions of approximately 14% could be achieved when compared with a ‘business-as-usual’ air scenario. This percentage reduction represents a 62 kt reduction in base year, 2010, and a 114 kt reduction in the final year, 2030. In total, the overall reduction achieved by such a modal shift, under the assumed conditions, during the period 2010–2030, equates to approximately 1.87 Mt of CO2. Importantly, if the electrical energy supply for HSR operations was further ‘decarbonised’, then it follows that a greater emission reduction would be achieved.  相似文献   

20.
In the fight to reduce CO2 emissions from international shipping, a bunker-levy is currently under consideration at the International Maritime Organization (IMO). Faced with the inability of the IMO to reach an agreement in the short term, the European Commission is now contemplating a unilateral measure of a speed limit for all ships entering European Union (EU) ports. This paper argues that this measure is counterproductive for two reasons. Firstly, because it may ultimately generate more emissions and incur a cost per ton of CO2 which is more than society is willing to pay. Secondly, because it is sub-optimal compared to results obtained if an international bunker-levy was to be implemented. These elements are illustrated using two direct transatlantic services operated in 2010.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号