首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 265 毫秒
1.
关于地表超载对既有盾构隧道的影响,现有分析计算理论将包含盾构隧道的地层视为完全土质地层,忽略了地表超载过程中既有隧道与地层相互作用导致的盾构隧道周围附加土压力。从盾构隧道上覆土层的土体间沉降状态来看,地表超载与隧道原有上覆土层对盾构隧道的影响不同,有必要单独考虑地表超载对既有盾构隧道的影响。在模型试验的基础上,开展既有盾构隧道与地层相互作用分析。结果表明:地表超载导致的既有盾构隧道附加土压力与隧道穿越土层、上覆土层及下卧土层的物理力学性能有关,也与盾构隧道的横向刚度有关;若按照现有理论计算软土地层中既有盾构隧道的允许地表超载,结果偏危险。  相似文献   

2.
在隧道结构计算分析时,如何计算确定作用在隧道结构上的上覆荷载的大小及分布是设计的关键。对于土质地层中的隧道,埋深较浅时上覆荷载计算时常采用全部覆土重量,而当土层较厚,隧道埋深较大时通常会采用太沙基公式、普氏压力拱理论公式及隧道设计规范公式等,这些公式在选用时尚存在一些问题,通过对比隧道在土质地层中几种公式计算的上覆荷载规律,分析各计算公式存在的问题,加以改进推导出了隧道在土质地层中竖向荷载的建议计算公式,并通过全国各地区实测数据加以验证。研究结果可为类似条件下工程的设计提供借鉴和参考。  相似文献   

3.
目前,盾构隧道整环足尺试验,其加载模式主要采用荷载控制。液压系统施加在结构上的荷载来源于静止土压力的计算值。这种加载方式采用荷载结构法的思想,难以反映作用在盾构隧道上的土压力随结构变形而改变的特性。针对以上不足,提出荷载位移曲线控制原理并将其应用于盾构隧道整环足尺试验。首先通过数值计算和地勘资料确定地层位移和地层抗力之间的关系,将其输入系统。然后观察此曲线与以液压缸顶力和行程为坐标的点的相对位置,通过调整液压缸顶力使得该点位于曲线上。此控制原理能够实现结构所受荷载随结构位移变化而变化,从而真实地模拟地层对盾构隧道的作用。在盾构隧道足尺试验中具有良好的应用前景。  相似文献   

4.
基坑施工对盾构隧道的影响分析   总被引:1,自引:0,他引:1  
运用同济大学曙光软件,采用荷载结构法和盾构隧道修正惯用法,以广州地铁黄沙车站上建设物业商住发展项目为研究背景,计算了隧道外壁侧向土压力、水位降、土层基床系数和隧道上方超载四种因素不同组合工况下的隧道结构受力,分析了基坑施工对紧邻地铁盾构隧道的影响.研究结果表明,影响紧邻盾构隧道受力的最主要因素为隧道外壁侧向土压力释放程度,当外壁侧向土压力由静止土压力进入主动土压力状态,将导致隧道弯矩增大143%,并致使管片开裂,环缝接头张开增量1.36 mm,影响隧道正常使用,在其它不利因素共同作用下,将危及隧道结构安全.  相似文献   

5.
关于地表超载对既有盾构隧道的影响,现有的分析计算理论忽略了既有隧道与地层的相互作用,由此计算得到的盾构隧道周围的附加土压力与实际不符。基于模型试验结果,分析既有盾构隧道与地层的相互作用,提出采用"两状态对比法"分析地表超载作用下盾构隧道对地层的相对挤压状态,并根据盾构隧道与地层的相互作用关系,推导盾构隧道对周围土体的水平和竖向相对挤压量计算公式,为下一步理论计算地表超载导致的隧道周围附加土压力奠定基础。盾构隧道对周围土体的相对挤压分析表明:在地表超载作用下,水平相对挤压量可简化为三角形,水平地层抗力范围约为72°;当隧道穿越土层的竖向压缩量大于隧道的竖向收敛变形时,隧道对地层产生竖向相对挤压,竖向相对挤压量与隧道变形及穿越土层的压缩模量有关。  相似文献   

6.
膨胀土具有显著的吸水膨胀和失水收缩、且胀缩变形往复可逆的特点,类似地层盾构隧道研究相对较少。针对成都地铁某盾构区间实例,根据盾构隧道埋深与盾构隧道外径关系进行分类,通过单一变化膨胀力,借助有限元软件采用壳单元建立荷载-结构模型计算各工况下管片的内力,对比分析管片内力和安全系数,研究膨胀力对盾构管片结构受力的影响。研究结果表明:随着隧道埋深的增加,地层膨胀力对管片结构受力表现为有利;可通过调整线路高程、增加盾构管片埋深、管片背后注浆等措施,降低地层膨胀力对管片结构受力的影响。  相似文献   

7.
研究目的:针对北京地铁8号线天桥~永定门外区间右线隧道试验段1~160环掘进施工,结合地层条件分析掘进参数和地表变形间的关系,并对土压平衡盾构微扰动施工控制进行初步探索,以期为砂卵石地层盾构隧道的设计与施工提供借鉴和参考。研究结论:(1)相对于粉质黏土与砂卵石组成的复合地层,盾构施工在砂卵石地层引起的沉降更大,对地层的扰动也更大;(2)盾构在砂卵石地层中掘进时,按照太沙基松动土压力理论计算得到的开挖面支护压力更加贴合现场实际情况;(3)千斤顶推进速度与螺旋机转速对于调节开挖面支护压力至关重要;(4)盾构在砂卵石地层中掘进所需的推力和扭矩要高于粉质黏土与砂卵石组成的复合地层中的相应值;(5)由于砂卵石土孔隙率较大,故需要及时调整注浆压力以保证注浆量,从而控制地表沉降;(6)对于砂卵石地层中的盾构施工,通过合理控制盾构掘进参数,可以较好地减小地表沉降和地层损失。  相似文献   

8.
研究目的:地层抗力系数的合理取值对于盾构隧道管片衬砌结构的设计的合理性、安全性至关重要。鉴于此,本文从既有的盾构隧道地层抗力计算方法出发,通过引入荷载修正和断面不同位置修正的系数ξ,考虑地层中隧道结构与地层的相互作用,推导出基于简化二向不等地应力场假定的地层抗力系数的修正计算公式,并与既有地层抗力系数的计算方法及现场实测数据进行对比分析,对该修正计算方法进行验证。研究结论:(1)采用本文得到的地层抗力系数修正计算方法与Muir Wood方法、Plizzari-Tiberti方法等三种地层抗力理论算法下管片衬砌结构受力分布规律基本相同,但内力的量值有所差异;(2)三种算法下最大正负弯矩对应轴力均与现场实测结果相差不大,采用本文方法管片结构弯矩偏差明显小于其他两种方法;(3)本研究成果可为盾构隧道结构分析中地层抗力系数的合理取值提供有益参考。  相似文献   

9.
基于位移反分析法的盾构掘进面土压力计算   总被引:1,自引:0,他引:1  
在盾构掘进过程中,由于刀盘的挤压作用,土仓压力不等于掘进面土压力。为研究二者的关系,提出基于位移反分析法的盾构掘进面土压力计算方法。建立模拟盾构掘进的ANSYS三维模型,结合盾构前方土体(或构筑物)的实测变形数据,调用ANSYS优化分析模块计算盾构掘进面土压力。该方法的适用区域为:位移监测点位于主要受掘进面土压力挤压作用区域的土体内。以上海地铁7号线上行线隧道斜下穿既有地铁2号线下行线隧道盾构施工工程为例,采用该方法对掘进面土压力进行计算分析。结果表明:该方法在本工程中的适用范围为盾构掘进刀盘距既有隧道中心线6~18m的区域;掘进面土压力约为土仓压力的1.17倍。  相似文献   

10.
对于大直径水下盾构隧道,研究并讨论列车振动荷载对隧道结构安全性及地基稳定性具有重大意义。以三阳路公铁合建长江隧道工程为背景,采用2.5维数值计算程序对三阳路长江隧道段典型断面处进行计算分析,研究地铁振动荷载和汽车振动荷载耦合作用对隧道结构及隧道下覆粉细砂层稳定性的影响。计算结果表明:(1)在地铁振动荷载与汽车振动荷载联合作用下,隧道衬砌结构的位移振动响应量值及受力情况均较小,振动荷载不会对衬砌结构自身产生不利影响;(2)列车和汽车车队耦合荷载引起隧道下覆饱和粉细砂层超静孔隙水压力在隧道正下方衰减较为缓慢;(3)隧道下覆饱和粉细砂地层由正常的地铁振动荷载及汽车荷载激发的超静孔隙水压力不会超过1 kPa,在正常地铁荷载及正常汽车荷载单独作用或联合作用下,该饱和粉细砂地层能够保持稳定,不会发生液化失稳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号