首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了解决纯电动汽车动力性和操控性难以同时兼顾的问题,将驾驶员意图分为稳态意图和动态意图,稳态意图用于保证车辆的操控性,动态意图用于保证车辆的动力性,在此基础上提出了一种基于驾驶员意图识别的纯电动汽车动力性驱动控制策略,该策略首先分别采用“典型工作点+分段插值”和模糊推理方法来识别驾驶员的稳态和动态意图;接着采用“动态补偿转矩保持”和“动态补偿转矩归零”等算法计算动态补偿转矩;最后通过“增量式”动态补偿转矩跟踪算法和电机过载管理算法给出最终的转矩指令。仿真与试验结果表明,该策略既可以根据驾驶员稳态意图保证车辆的操控性,也可根据驾驶员动态意图提高车辆的动力性。  相似文献   

2.
轮毂电机驱动车辆各轮转矩精确可控且响应迅速的特点适用于越野工况,但越野路面起伏不一且附着条件多变,因此,开发基于越野工况辨识的车辆驱动力控制策略,对提升轮毂电机驱动车辆的纵向行驶稳定性具有重要意义。基于动力学模型分析路面附着与路面几何特征,确定可用于越野工况辨识的车辆特征参数集;针对车轮悬空垂向载荷估计失真现象,且由于地面垂向力的实际变化导致车辆垂向载荷分配比例的改变,修正了垂向载荷的计算;利用各特征参数的差异与越野工况的映射关系判定工况属性,采用模糊识别法界定4种地形工况;驱动力控制上层考虑工况与驾驶员影响因素,通过越野工况辨识结果决策驱动利用系数,作为前馈期望转矩调节权重;中层通过四轮垂向载荷得到转矩分配系数,设计驱动力分配算法;下层针对车辆在越野工况下出现车轮滑转与悬空状态,对车轮进行动态转矩补偿。仿真测试与实车验证表明,越野工况辨识结果与预期相符,驱动力控制策略综合优化了车辆稳定性和动力性。  相似文献   

3.
Strategy of Acceleration Torque Compensation Control for Electric Vehicle   总被引:1,自引:0,他引:1  
为了解决电动汽车在急加速和急起动时电机输出动力不足难以满足驾驶员对动力需求的问题,在对汽车加速过程力矩特性分析的基础上提出了一种加速转矩补偿控制策略.该策略可在线性稳定的驱动力矩控制策略的基础上确定基本驱动力矩.采用模糊控制算法开发了以加速踏板开度及其变化率为输入、目标扭矩增量为输出的驾驶员意图表达控制器.在此基础上设计了加速转矩补偿算法用于计算补偿扭矩.最终确定了驾驶员的转矩需求并向电机驱动系统发出了转矩控制指令.仿真结果表明,该控制策略能够显著提升电动汽车的加速性能.  相似文献   

4.
针对分布式驱动车辆转向工况在低速下期望提高转向机动性能,高速下期望保证行驶稳定性的需求,充分考虑转向行驶内外侧车轮的转向关系以及车辆动力学,制定了适应车速变化的四轮转矩分配策略,建立了四轮轮毂电机驱动模型以及二自由度参考模型。为了改善分布式驱动转向机动性能,建立自抗扰控制器调整内外侧车轮转矩,形成合理的转速差,减小转向半径,以提高转向机动性;对于高速转向行驶稳定性的需求,通过二次规划方法优化分配各车轮驱动力矩,分析轮胎纵横向附着裕度建立目标函数,并加入附加横摆力矩和路面附着力的限制,进行车轮驱动转矩的在线优化分配,提高车辆转向行驶的稳定性;另外为避免2种控制模式转换时驱动转矩突变,根据车速和稳定性参数制定模糊规则决策2种模式的协调系数,保证2种控制模式的平滑过渡。基于CarSim和MATLAB/Simulink进行联合仿真,并搭建硬件在环平台进行试验,对所提出的方法进行验证。结果表明:在低速转向工况下,提出的分配策略能够调节内外侧车轮产生差速效果,与转矩平均分配的策略相比,转向半径有所减小,提高车辆机动性;高速转向工况下,分配策略能够保证车辆稳定转向,与未考虑稳定性控制的分配策略相比,能更好地跟踪目标轨迹,且横摆角速度控制在参考横摆角速度附近,证明了所提控制策略的有效性。  相似文献   

5.
开发了一种由双转子电机和双排行星齿轮机构组成的机电无级传动混合动力驱动系统,建立了整车动力学模型,提出了"转矩分配+发动机转矩估计+电动机转矩补偿+补偿系数修正"的协调控制策略;最后分别对由纯电动模式切换到混合驱动模式的定工况和全工况进行仿真,结果表明:所提出的控制策略能有效地抑制驱动模式切换过程中因不同动力源动态特性差异所造成的整车纵向冲击,提高了汽车行驶平顺性。  相似文献   

6.
提出了根据发动机转速信号来识别不同制动工况的方法,制定了相应的换挡控制策略,并在装有AMT的某重型载货汽车上进行了实车制动试验。试验结果表明,制动上况下的换挡控制策略不仅符合车辆实际行驶工况的需要,而且符合驾驶员的制动意图。  相似文献   

7.
基于模糊控制的纯电动汽车加速输出转矩优化控制策略   总被引:1,自引:0,他引:1  
为使纯电动汽车加速时的输出转矩充分符合驾驶员加速意图,设计了常规、动力、经济等3种驾驶模式供驾驶员手动选择。常规模式下,基于线性稳定驱动转矩控制策略确定基本输出转矩;动力模式下,采用模糊控制算法以加速踏板开度及其变化率为输入,动力优化转矩为输出,对基本输出转矩作增矩优化;经济模式下,采用模糊控制算法以电机转速和加速踏板开度为输入、经济优化转矩为输出,对基本输出转矩作减矩优化。仿真结果表明,上述控制策略可以很好地反映驾驶员加速意图,达到不同模式下所期望的控制目标。  相似文献   

8.
利用杠杆法对THS-III混合动力系统的纯电动加速过程进行了动态分析,通过仿真比较了不同驱动需求转矩、发动机静态阻力转矩和扭转减振器阻尼对发动机转速波动的影响。结果表明,纯电动模式下若仅对驱动电机实施转矩控制,可能会直接导致发动机被起动并产生转速波动,从而严重影响车辆行驶的平稳性。为此,设计了纯电动模式发动机转速补偿控制策略,并合理地选择控制器采样时间。经Matlab平台仿真验证,所采取的措施明显降低了发动机转速波动,在满足驾驶员转矩需求的情况下,改善了车辆行驶的平稳性。  相似文献   

9.
针对分布式驱动电动汽车制动安全性和制动能量回收兼顾的问题,研究了基于NSGA-II多目标优化算法的车辆制动转矩分配控制策略。建立基于模糊控制的优化集筛选模块,根据车速以及需求制动转矩从Pareto前沿优化集中确定最优转矩分配系数。以某款乘用车为研究对象,基于MATLAB/Simulink和VPAT搭建制动转矩分配控制策略模型进行仿真,并搭建硬件在环仿真平台,对算法的实时性和有效性进行了验证。结果表明:WLTC工况下,基于NSGA-II的制动转矩分配的控制策略制动转矩分配系数更加接近理想I曲线对应的分配系数,电机制动高效区工作点提高了9.51百分点,再生制动能量回收率提升4.71百分点。  相似文献   

10.
针对下坡工况下混合动力汽车辅助制动控制退出过程中可能产生的安全隐患,本文提出一种基于驾驶员主观意图和行车安全的辅助制动退出控制方法。通过对下坡辅助制动过程中车辆的受力情况和驾驶员驾驶意图的分析,分别制定了基于驾驶员加速意图和制动意图的下坡辅助制动退出策略,并据此设计了对下坡辅助制动退出的协调控制过程。最后通过仿真和实车试验对以上策略进行验证,结果表明,该方法在符合驾驶员驾驶意图的前提下,可以保证下坡辅助制动退出过程中车速始终受驾驶员控制,提高了辅助制动退出过程的安全性,并对驾驶员的误操作有一定的容错能力。  相似文献   

11.
根据驱动电机系统在纯电动轿车中的应用特性,在复杂工况下,对整车行驶过程中的转矩需求值、速度变化值等参数进行分析,基于模糊控制算法思想,模拟道路路况和驾驶员意愿,线性化调节扭矩补偿值,有效抑制车辆的低速抖动,提高车辆的行驶平稳性。  相似文献   

12.
为解决48 V微混混合动力轿车在急加速工况下发动机排放恶化和瞬态转矩响应量不足的问题,利用配备BRM(启动电机)的48 V微混HEV动力系统可短时工作于BOOST模式的优势,开发了急加速工况下的双动力源转矩协调控制策略,并基于模糊控制器实时优化了发动机输出转矩。通过仿真试验表明,所提出的BOOST模式控制策略可较好地识别驾驶员不同的急加速请求意愿,实时决策出的发动机转矩可满足转矩请求并优化发动机排放性能。  相似文献   

13.
针对前轮独立驱动电动汽车,研究一种基于小波控制器的驱动稳定性控制系统。为提高车辆对开路面的行驶稳定性,根据驱动轮等转矩分配控制策略,提出基于神经网络PID的驱动轮滑移率相近为目标控制策略。针对矢量控制中的电流控制,提出基于离散小波变换的电流控制器。通过CarSim/Simulink建立前轮独立驱动电动汽车联合仿真平台,进行不同工况整车性能仿真与分析,并基于A&D5435快速原型开发平台进行实车试验。仿真与试验结果表明:基于小波控制器的驱动控制系统不仅提高了车辆对开路面行驶的稳定性,而且具有更平滑、更快速的转矩响应;对开路面工况下,提出的控制策略左侧、右侧驱动轮速度仿真结果与试验结果最大偏差分别为3.43%和3.56%;等转矩分配控制策略下,左侧、右侧驱动轮速度仿真结果与试验结果最大偏差分别为3.86%和3.25%,表明了试验与仿真的一致性;对开路面仿真工况下,相比于驱动轮等转矩分配控制策略,基于神经网络PID的驱动轮滑移率相近为目标控制策略的车辆峰值质心侧偏角降低了79.57%,侧向跑偏距离降低了73.39%。  相似文献   

14.
康宇航  李韶华  杨泽坤 《汽车工程》2023,(4):637-646+597
重型商用车存在转动惯量大、控制响应慢等特点。针对重型商用车,基于质心侧偏角、横摆角速度、垂向载荷转移系数设计了三维相空间分析方法,从而判断车辆的实时稳定状态。针对不同的车辆行驶状态,采用AFS控制和AFS/DYC分级控制,并基于利用附着系数设计了可拓控制方法,从而补偿前轮转角和横摆力矩的控制输出,以保证控制器在不同工况下的鲁棒性。通过TruckSim/Simulink联合仿真和硬件在环实验验证了该方法的有效性,并在仿真中通过■判断和■判断对比证明了相空间动态稳定域的优越性。仿真和实验结果表明:相比单纯以驾驶员意图操纵车辆,所设计的基于可拓H的AFS/DYC分级控制策略可以保证车辆在不同工况下的稳定性,尤其在低附着路面上表现出更好的稳定性,可有效降低车辆在极端工况下发生交通事故的概率。  相似文献   

15.
针对独立驱动电动汽车在高附着系数路面高速急转时易发生侧翻事故,在低附着系数路面急转易发生侧滑失稳事故,且单一控制器在不同附着系数路面适应性较差等问题,根据独立驱动电动汽车特点设计了基于分层式结构的稳定性集成控制器。建立了整车动力学模型,并进行了车辆状态参数估计;设计了稳定性集成控制器的控制策略,对车辆的侧倾、横向稳定性状态判定条件和协调策略的制定进行了研究,分别设计了侧倾稳定性控制器和横向稳定性控制器;设置了路面附着系数0.9到0.2的对接路面仿真工况,并在此工况下对所设计的控制器的控制性能进行了仿真测试。结果表明,所设计的稳定性集成控制器相比于单一控制器具有更好的适应性,可有效降低车辆高速行驶过程中的横向载荷转移系数、质心侧偏角等状态量,提高车辆行驶的稳定性和安全性。  相似文献   

16.
本文中以具有发动机、ISG电机和轮毂电机多个动力源的四轮驱动混合动力汽车为研究对象,依据驱动轮的滑模变结构控制算法,制定了目标驱动转矩控制策略。同时,基于模糊控制算法制定了各动力源的转矩协调分配控制策略,并对模糊推理器输出的各转矩进行了修正。在Matlab/Simulink环境下对所设计的控制策略进行了离线仿真。结果表明,在棋盘路面工况下,所设计的控制策略能有效抑制各驱动轮过度滑转,提高了混合动力汽车的动力性和行驶稳定性,改善其燃油经济性。  相似文献   

17.
为减小或消除单电机式强混合动力电动车辆在纯电动模式与发动机驱动模式间切换时产生的动力系统冲击,提出了发动机起动过程的转矩协调控制策略和发动机退出过程的转矩补偿控制策略.转矩协调控制策略包括起动模式下的发动机起动阻力转矩补偿控制和调节模式下的发动机过冲转矩平衡控制,转矩补偿控制策略利用电机补偿发动机退出过程中动力系统转矩的变化.台架和实车试验结果表明了该动态协调控制策略可确保发动机的快速平稳起动和发动机退出时不产生动力系统冲击.  相似文献   

18.
宋强  王冠峰  商赫  张念忠 《汽车工程》2023,(11):2104-2112+2138
为改善高速低附着路面上的车辆动力学性能,本文针对分布式驱动电动汽车提出一种基于多参数控制的操纵稳定性控制策略,包括上层轨迹跟踪控制和下层转矩分配控制。上层控制器设计基于2自由度车辆模型和驾驶员预瞄偏差模型,提出了MPC轨迹跟踪控制策略,实现对侧向偏差、横摆角偏差、质心侧偏角、横摆角速度的多参数控制。下层控制器以轮胎负荷率最小为优化目标,获得4个车轮电机转矩的最优分配量,借助于7自由度动力学模型,在双移线、蛇行工况下完成了CarSim-Simulink联合仿真。结果表明:提出的控制策略改善了高速、低附着工况下的操纵稳定性和轨迹跟踪精度。  相似文献   

19.
对基于规则类的定参数控制算法中的控制参数进行优化,建立驾驶意图的模糊识别模型,制定智能算法,并进行仿真分析.结果表明:智能算法使得整车的需求转矩更加准确,车辆对驾驶员的适应性更强,燃油经济性更好.  相似文献   

20.
针对路面条件变化时紧急制动系统易出现的制动时机决策失准问题,提出基于车辆运动学的动态决策增强安全模型的紧急制动策略。首先,依据目标车加减速状态细化工况,基于车辆速度与加速度建立动态决策安全模型,以提高极端工况下控制策略对车辆动态行驶速度的适应性。接着,以无迹卡尔曼滤波(UKF)算法连续辨识获得道路附着系数,通过系列道路条件下对实车和模型的制动性能试验建立路况与车辆减速能力的关系,根据道路条件实时更新模型依赖的极限减速度参数,进一步增强控制策略安全性和对动态道路条件的适应性。最后,通过附着系数连续多变路面工况试验和中国新车评价规程(C-NCAP)测试工况试验,对控制策略进行验证。结果表明,滤波算法具备精准的辨识效果;而自动紧急制动策略可在变化附着系数路面上实现对制动时机的准确决断。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号