首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
能量回收利用系统:CHARGE车速降低的时候动能会转化为电能。混合动力系统可在制动或滑行期间将制动能量转化为电能。通过这种能量回收利用功能为高压蓄电池充电。需要时,蓄电池重新将存储的电能输送给电机。在转速表内以带有"+"的箭头表示能量回收利用(如图18所示),即蓄电池充电状态。车速低于10km/h的时候,能量回收利用显示亮起,车辆正在滑行或刚刚制动。满足下列条件的时候即可回收制动能量:◆车辆在移动◆换挡杆已挂入位置D、R、M/S◆高压蓄电池未充满  相似文献   

2.
分析了目前汽车制动能量回收利用现状,在蓄电池储能方案的基础上,提出了利用制动能量驱动SR电机工作,将制动过程中的动能转化为电能给用电设备或给蓄电池充电;在汽车起步或加速过程中,SR电机既为传动系提供动力又带动压气机给发动机提供压缩空气改善燃烧。  相似文献   

3.
本文介绍了目前国际上几种比较新颖的节能技术,诸如能量收集与储存新技术,汽车行驶中的能量回收再生技术,电容器和电池二次电池能量回收再生技术,飞轮电动汽车的能量与利用技术等等。  相似文献   

4.
文章以制动能量回收控制策略为核心,展开制动能量回收系统关键技术现状分析。首先重点阐述制动能量回收前后轴制动力与电-液制动力分配原则与技术要点。其后提出电机性能、储能装置性能状态、再生制动系统结构、行驶工况四类关键因素对制动能量回收的影响,并对其关键技术的研究现状进行综合分析。最后提出制动能量回收系统未来的研究方向。  相似文献   

5.
液压制动与制动能量回收的组成 图6为电动汽车的液压制动和制动能量回收控制 制动能量回收电控单元,基于各车轮加速度传感器的检测输出信号判断车辆是否在良好路面状态或恶劣路面状态,只有在良好路面状态下,制动能量回收电控单元对液压制动与电机的制动能量回收实施协调控制。这是一般电动车进行能量回收制动的必要性。如果在恶劣的路况下,考虑到车辆的制动安全性,电机的电控单元及制动能量回收电控单元发出指令,逐步限制制动能量回收,直至禁止,  相似文献   

6.
电动汽车续航短是一个突出的问题,而能量回收技术对于增加电动汽车的行驶里程是比较有效的办法。文章根据制动强度来分配前后轮制动力以及电机制动力的比例,通过电机参与制动,进行能量回收。用MATLAB/Simulink与cruise软件联合仿真,仿真结果表明使用该控制策略的电动汽车取得了良好的能量回收的效果。  相似文献   

7.
分析电动汽车制动能量回收的制约因素,综合汽车制动动力前、后轮制动力分配,电机制动与机械制动并行控制和电池耐受性分析,提出了制动能量回收的联合控制策略.基于Simulink和Cruise软件平台进行了系统建模和联合仿真.结果表明该联合控制策略能够实现法规制动条件下的制动能量回收,回收率达13.7%,提高续驶里程16.4%.  相似文献   

8.
<正>制动能量回收液压制动的协调控制以普锐斯为代表的混合动力车在行驶制动、减速时,其制动能量可转变为电能,并储存于蓄电池中(称为制动能量回收),以降低燃油消耗。储存于蓄电池中的电能用于车辆起动和加速以降低发动机负荷,从而提高燃油经济性。为了要增加车辆制动、减速时的能量回收量,开发了制动能量回收制动系统。这种制动系统的控制是由原发动机车型的液压制动器与电机(减速、制动时起发电机的作用)的能量回收系统组成。  相似文献   

9.
针对因特殊的动力布置形式导致的轮边驱动电动汽车操稳性和平顺性之间冲突,本文中提出了一种新式电磁直线电机式悬架系统的主动控制系统。考虑到其能量回收性能不佳的弊端,基于LQR控制设计了一种包含能量管理单元的能量回收控制器,并在Matlab/Simulink中对整个系统进行了仿真。结果表明,所设计的能量回收控制器不仅能够改善汽车的操稳性和平顺性,而且能有效回收汽车悬架的振动能量。  相似文献   

10.
文章提出了一种无人驾驶纯电动汽车制动扭矩分配控制方法。该方法首先根据动力电池、驱动电机状态以及整车状态计算驱动电机最大能量回收扭矩,并在此基础上进行需求制动扭矩分配;接下来创造性的将电机系统引入到制动控制系统中,充分考虑了液压制动系统由于温度(如热衰减)、部件机械特性以及环境等影响其输出制动力矩稳定性与准确性的因素,通过电机能量回收所产生的制动扭矩对此进行补偿,保证最终车辆制动过程中所产生的负向加速度与需求保持一致。最后通过实车实验,验证了该方法的可行性与可靠性。  相似文献   

11.
文章以某款纯电动车制动能量回收系统为研究对象,首先,设计一种电液助力系统,阐述其结构方案和工作原理,接着基于该电液助力系统开展纯电动车串行制动能量回收系统设计研究,包括结构方案、控制方案、电气方案;实现在某款纯电动车产品上的搭载应用开发,结果表明,基于该电液助力系统的纯电动车能量回收系统,实现车辆在制动或减速阶段,机械-液压制动力与电机回馈制动力实时协调,最大限度地回收制动能量,并且获得较好的制动稳定性和“踏板感”,单个ECE循环工况经济性贡献率最高达28.9%。  相似文献   

12.
混合动力车用飞轮电池可行性分析及性能仿真   总被引:1,自引:0,他引:1  
通过对飞轮电池能量特性的研究计算并综合考虑其使用成本,分析了其在混合动力汽车上应用的可行性.基于MATLAB/Simulink建立飞轮电池模型并仿真,根据飞轮电池的能量特性将飞轮转速限制在低能量损耗区间内.仿真结果表明,飞轮电池的能量特性适用于混合动力汽车,相关储能状态参数的引入使飞轮电池的能量储存状态可以通过对飞轮瞬时转速的测量进行精确计算,从而更加有利于混合动力系统的综合控制.  相似文献   

13.
提出一种新的制动能量再生系统。通过在CA6100SH8混合动力客车原装ABS系统的基础上增加压力传感器、双向单通阀和补气阀,配上控制模块,实现了驾驶员的制动意图,并达到最佳的制动能量回收效果;同时还确保了电机失效时的可靠制动。实车试验验证了该系统的制动能量再生功能。  相似文献   

14.
介绍了电动汽车制动能的回收路径和控制方式,并建立仿真模型。通过仿真结果分析,该控制方式可有效提高能量的利用率,增加续驶里程。  相似文献   

15.
当传统汽车减速或制动时,车辆运动能量通过制动系统而转变为热能释放到大气中。而新能源汽车通过制动能量回收技术转变为电能储存于蓄电池中,从而提高车辆的续驶能力。新能源汽车在制动过程中,要保证其制动稳定性和平稳性,同时要尽可能多地回收制动能量,以延长新能源汽车续驶里程。文章通过对制动能量回收系统的定义、组成及工作原理进行研究,剖析了新能源汽车电机再生制动能量回收工作过程和制动能量回收系统的制动工作过程,阐明了制动能量回收系统各部件的作用;重点围绕途观L PHEV制动系统组成、途观L PHEV制动能量回收系统混合制动工作原理,即减速请求、摩擦减速、再生减速的支持及三相电流驱动装置的支持不足4个工作过程;系统地介绍了Tiguan L PHEV制动能量回收系统主要是通过控制机电式制动助力器e-BKV和蓄压器VX70实现的,驾驶员的减速请求是摩擦减速与能量回收减速的综合。  相似文献   

16.
电动汽车一次充电的续驶里程短,已成为制约电动汽车发展的主要问题,以现目前蓄电池能量储能技术的发展,是不能直接增加蓄电池容量来解决续驶里程问题,在电动汽车上采用再生制动来回收制动能量是增加电动汽车续驶里程的有效方法之一。本文通过对电动汽车制动能量回收系统原理分析,设计出电动汽车制动能量回收系统的电路,最后以设计的制动回收系统电路进行分析选择,主要是对驱动系统、储能系统和变换器的选择和设计。  相似文献   

17.
孙大许  兰凤崇  陈吉清 《汽车工程》2013,(12):1057-1061
针对具有双轴双电机四驱结构的电动汽车,设计了一种基于I线制动力分配策略。该策略在制动时,前后轴制动力按照I线分配,前后电机同时回收能量,既发挥了制动能量回收潜力,又保证了制动稳定性。仿真结果表明,该策略能回收更多的能量,制动力分配曲线与I线相吻合,保证了制动稳定性,也验证了该策略的有效性。  相似文献   

18.
传统商用车一般采用气刹,利用制动气罐气压产生制动力,使车辆达到需求制动效果。混合动力系统因为增加电机,可利用电机发电和传统机械制动共同作用使车辆达到想要的制动效果。本文基于商用车气刹静态特性、迟滞特性,给出基于试验数据和驾驶员行为的制动踏板开度电压与制动踏板开度、滑行能量回收、制动能量回收的基本实现方法。  相似文献   

19.
由于公交车辆在市区运行,车辆的频繁起动、制动而带来的汽车能量的巨大损失,研究采用液压蓄能的方法,使汽车动能在液压能和机械能之间的转换,将汽车制动时的动能回收再利用,从而达到节能、减排和提高汽车寿命的目的。  相似文献   

20.
《汽车时代》2009,(2):124-124
长期陷入低迷的威廉姆斯车队期待在本赛季卷土重来,新赛车的开发上也是不遗余力。其中,技术团队方面同对手相比占据了一定优势,倾尽全力进行KERS的开发。对手车队通常采用电池贮藏KERS系统的能量,而威廉姆斯则独辟蹊径地使用飞轮式装置。这是一种利用飞轮转动转换能量的形式,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号