首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 635 毫秒
1.
平潭海峡公铁两用大桥元洪航道桥为(132+196+532+196+132)m的钢桁混合梁斜拉桥。桥塔为H形钢筋混凝土结构,塔高200m。斜拉索采用钢锚梁+钢牛腿的锚固形式,钢锚梁单件最大重量17.6t,钢牛腿单套最大重量9.0t。钢锚梁采用整体吊装方式,单节最大吊装重量达35.6t。元洪航道桥所处位置常年大风天气,测量窗口期较少,且钢锚梁定位精度要求高。为了规避塔柱变形对钢锚梁测量定位精度的影响,钢锚梁采用内控法进行测量定位,即仪器架设到塔柱顶部施工面进行测量。通过钢锚梁加工及预拼测量、塔柱内腔控制点加密、首节钢锚梁精确定位、剩余节段钢锚梁精确定位等技术,确保了塔柱施工质量。  相似文献   

2.
为提高斜拉桥索导管空间定位的精度,进一步推动测量定位技术的实用化,对采用钢内导管装置的斜拉桥索导管精确定位技术进行研究。钢内导管是由一根半圆柱体形状的细长轴(中心线处开有微小V形槽)相连双半圆法兰盘的一种装置,其中一端与半圆法兰盘平齐,另一端穿过半圆法兰盘。斜拉桥索导管定位时,在初步定位的基础上,将钢内导管穿入索导管中,利用钢内导管将出塔点坐标和理论锚点坐标由虚点转化为实点,对索导管进行直接精确复测定位,再利用两坐标点所在空间直线方程对实测点进行判别。将该技术应用于台州市椒江二桥上,实践结果表明该技术能简单快速地实现斜拉桥塔端索导管的精确定位,精度能达到5mm以内。  相似文献   

3.
武汉二七长江大桥桥塔索道管精密定位方法   总被引:1,自引:1,他引:0  
为保证武汉二七长江大桥(斜拉桥)施工时索塔的几何形状及空间位置符合设计规范要求,通过布设精密测量施工控制网、构建三维坐标数学模型完成塔柱索道管定位。步骤如下:在岸上布设3个强制观测墩,和全桥控制网组成高精度加密控制网;在岸上的劲性骨架上安装索道管定位架、焊接索道管调整装置后,整体吊装并调整劲性骨架的位置,完成岸上初定位;在塔柱劲性骨架上设置控制点,建立独立坐标系进行索道管高精度定位测量。精度分析表明,该方法对索道管定位的测量精度完全满足±5mm设计的要求。  相似文献   

4.
高杰  黄克起  代龙 《桥梁建设》2012,42(Z1):50-53
粉房湾长江大桥主桥为公轨两用双层桥面钢桁梁斜拉桥,为了将斜拉索穿过索导管、顺利牵引至塔柱内箱,并保证锚固在主梁同一截面上的4根斜拉索同时对称张拉,设计制作了张拉杆、软牵引2套张拉系统.斜拉索施工方法如下:在上游塔柱各设置1台塔吊用于塔端斜拉索安装及空中展索;在塔顶布置卷扬机,将斜拉索牵引入索导管并提升塔柱内的千斤顶、撑脚、张拉杆等塔内设备;在塔顶布置工字钢扁担梁支撑塔顶卷扬机;在桥面塔柱安装卷扬机将索头提升至索导管位置;采用卷扬机及导向滑轮组、手拉葫芦将梁端索头牵引到位;采用千斤顶张拉斜拉索.  相似文献   

5.
《公路》2015,(8)
斜拉桥主塔索导管的安装定位是斜拉桥施工中的一个难点,其索导管的安装精度将直接影响到斜拉索的整个受力状态及桥梁整体合龙时的线形结构,从而影响到斜拉桥的正常使用寿命,结合四川省涪江五桥斜拉桥索导管施工测量控制实践,对索导管的安装测量高精度定位进行了分析研究,不同测量外部条件、不同精度的全站仪采用相对定位技术进行观测的误差大大降低,完全满足斜拉桥索导管定位精度要求,提高了定位效率、降低了观测成本,为类似工程提供参考。  相似文献   

6.
商合杭铁路芜湖长江公铁大桥主桥为主跨588m的双塔双索面箱桁组合梁斜拉桥,采用平行钢丝拉索,单根斜拉索最大索力达16 000kN。索塔锚固区采用钢锚梁拉索锚固体系与平行钢丝环向预应力锚固体系相结合的方式锚固,单层预应力体系采用"#"形预应力锚固,预应力采用367mm高强度低松弛钢丝束,其抗拉强度为1 670MPa,弹性模量为2.05×105 MPa。在桥塔施工时预埋内径90mm的金属波纹管作为预应力孔道;提前进行钢丝束的编束及张拉端镦头,待塔柱模板拆除后进行钢丝穿束;钢丝穿束后先进行固定端锚板安装及固定端切丝,再进行固定端镦头;待塔柱混凝土强度满足规范要求后,采用250t穿心式油压千斤顶进行预应力张拉;预应力张拉后进行预应力孔道压浆,最后进行预应力锚口封闭,完成预应力施工。  相似文献   

7.
崔巍  傅新军  陈相  支超 《桥梁建设》2020,50(2):111-116
商合杭铁路芜湖长江公铁大桥主桥为主跨588 m的双塔双索面高低塔箱桁组合梁斜拉桥,该桥2号墩桥塔采用塔梁同步施工,索塔锚固区采用钢锚梁拉索锚固体系与平行钢丝环向预应力锚固体系相结合的方式锚固。为提高测量精度,精确定位钢锚梁,在分析钢锚梁定位精度影响因素的基础上进行主桥施工控制网优化;在自然环境“零”状态、外部荷载“零”状态下对塔柱变形进行监测,获取施工误差引起的塔柱变形量,用于修正钢锚梁定位坐标;采用全站仪精密三角高程测量法、三角高程差分法、侧边交会法相结合的办法将施工控制网高程、平面坐标传递至塔柱待施工段基准点,获取塔柱待施工段基准点在施工控制网投影面的三维坐标,采用相对设站法完成钢锚梁高精度、快速定位。  相似文献   

8.
黄冈公铁两用长江大桥主桥为(81+243+567+243+81)m双塔双索面钢桁梁斜拉桥,斜拉索最大规格为PESC7-475,单根重约50 t.大规格冷铸锚固体系的质量控制是斜拉索整个制作过程中的重点和难点,为保证其制作质量,通过制作试验索,对原材料质量、工序进行质量控制,并对试验索进行疲劳和静载试验.结果表明,冷铸锚固体系的各项性能指标符合设计和规范要求.按照试验索成熟的冷铸锚固体系制作工艺、质量控制方法,完成了该桥152根斜拉索的制作,超张拉检验得出冷铸锚分丝板内缩值均不大于6 mm,两端冷铸锚固体系完好,锚杯和螺母旋合正常,斜拉索合格率100%.  相似文献   

9.
望东长江公路大桥主桥为(78+228+638+228+78)m混凝土PK箱组合梁斜拉桥。为准确控制主桥成桥线形,实施高精度测量技术,主桥开工前布设6座混凝土强制归心观测墩,与前期设计交桩点一起作为首级控制网点;建立桥轴坐标系,采用主桥里程桩号和桥轴线偏距作为坐标数据,实施时用图纸设计坐标和里程桩号求取施工控制网与桥轴坐标系的转换关系式;采用GPS水准法进行跨河水准测量;采用Leica TCA2003全站仪测边后方交会方法和三等三角高程测量往返测方法进行钢锚梁及索导管定位;塔柱施工测量主要控制钢护筒偏差、立模偏差、塔柱变形控制等满足精度要求;主桥线形控制主要为轴线及高程控制测量。实践表明,各项测量技术在实践中获得了良好的效果,保证了大桥准确对接。  相似文献   

10.
重庆红岩村嘉陵江大桥为高低塔双索面公轨两用钢桁梁斜拉桥,索塔斜拉索锚固采用钢锚箱形式。钢锚箱为箱形结构,最大节段尺寸为6.2m×2.2m×3.0m(长×宽×高),节段最重达26t,吊装高度达160m。首节钢锚箱索导管长达8m,跨越塔柱2个浇筑节段(标准节段高6m)。针对钢锚箱体积大、重量重、吊装高度高和首节钢锚箱索导管超长的特点,采用专用起重设备吊装钢锚箱节段,首节钢锚箱与索导管分离安装,首节钢锚箱索导管通过空间位置放样、初定位、精密定位确保三维坐标精度,采用L10角钢进行加强以防首节钢锚箱变形,剩余节段钢锚箱安装采用导向装置就位。施工中严格控制每节段钢锚箱的平面位置、高程、倾斜度、顶面平整度,实现了钢锚箱安全、优质、快速的施工目标。  相似文献   

11.
福州浦上大桥通过塔顶设鞍座,将斜拉索传来的集中力均匀分布于混凝土塔柱。详细介绍了鞍座铸钢件的铸造、加工、表面处理、涂装,以及铸钢件安装作业方法,可供同类桥梁参考。  相似文献   

12.
薛进 《桥梁建设》2006,(Z1):57-59
介绍东海大桥主通航孔420 m跨单索面钢箱—混凝土板结合梁斜拉桥上部结构安装施工程序和方法,以及安装施工的要点。  相似文献   

13.
平潭海峡公铁大桥长乐岸共计38孔49.2m跨铁路简支箱梁,采用单箱单室等高直腹板预应力混凝土结构,单孔自重1 560t。桥址海域环境复杂、大风频繁、作业环境恶劣、安全风险高,经综合比选,混凝土箱梁采用上行式海上造桥机现浇施工。采用MIDAS Civil软件建立造桥机模型,计算显示极端工况下造桥机抗风稳定性不满足要求,需采取防风、抗台措施。施工过程中,通过在造桥机两侧设置防风网,在其主梁或支腿处设置刚性拉压杆连接和对拉锚固体系,以及在中支腿侧向设置抗滑移系统等措施,提高了造桥机的抗风稳定性及混凝土箱梁现浇施工工效(最快达21d/孔)。  相似文献   

14.
杭州湾跨海大桥北航道桥为双塔双索面钢箱梁斜拉桥,主塔斜拉索锚固区采用钢锚箱,主要介绍北航道桥钢锚箱施工技术。  相似文献   

15.
无锡市清宁大桥主桥为主跨113m的矮塔斜拉桥,跨越京杭大运河,该桥为单索面、主梁为预应力混凝土单箱三室箱形梁,桥梁全宽30m。拉索为平行钢丝斜拉索、冷铸锚,主塔为钢筋混凝土结构,主塔锚固区采用钢锚箱的锚固方式。  相似文献   

16.
武汉杨泗港长江大桥为主跨1700 m的单跨双层钢桁梁悬索桥,猫道采用三跨连续式无抗风缆猫道结构体系,猫道中跨跨度1700 m。猫道主要结构包括猫道承重索、门架支承索、扶手索、猫道面层、猫道门架系统、横向天桥、猫道索转向系统以及锚固调节系统等。猫道面宽4.0 m;猫道承重索由10根?56 mm钢丝绳组成,通过精轧螺纹钢筋和钢丝绳锚固于锚碇前锚面处;门架支承索由2根?54 mm钢丝绳组成,通过散索鞍支墩门架锚固于锚碇前锚面处;猫道索通过塔顶转向鞍座、下拉装置实现竖向转向,通过横向变位刚架实现水平转向。猫道结构静力计算结果表明:猫道索安全系数及静力抗风稳定性满足规范要求。  相似文献   

17.
桥梁挠度测试仪的工作机理是通过液气耦合压差的改变转变为桥梁挠度变化。在沈阳市城市桥梁检测工作中采用桥梁挠度测试仪测试桥梁的竖向挠度。以沈阳市三好桥主桥挠度测试、大成桥北引桥第5跨空心板挠度测试及公和桥主桥残余挠度测试为例,对比分析测试结果与计算结果。结果表明:测试结果均满足相关要求;该仪器布置简便,测试快速、准确,满足城市桥梁检测快捷、高精度的要求。  相似文献   

18.
宁波外滩大桥主桥采用独塔四索面空间异型斜拉桥结构,跨径布置为(225+82+30)m。为确保该桥施工安全,通过对结构受力模式的分析,明确了前塔柱竖拼竖转法施工、桥塔的弯矩、后锚点的安全及主梁行车舒适性是控制的重点。采用MIDAS Civil仿真该桥施工全过程,计算结果表明,该桥桥塔、主梁、斜拉索及后锚点在整个施工过程中均满足规范要求,且均存在一定的安全储备。通过监控参数对主梁竖向变形幅度的敏感性分析,确定施工监控时以控制斜拉索索力为主的原则。  相似文献   

19.
天津富民桥主桥为单塔空间索面自锚式悬索桥,主缆架设、吊索第1轮张拉采取线形控制为主的措施,空间缆索施工测量控制环节非常重要.从测量仪器的配置、三维坐标测量系统的建立、误差分析以及成功解决空间体系施工线形测量问题等方面,介绍了该桥缆索系统安装的测量控制技术.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号