首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
This work focuses on developing a variety of strategies for alleviating congestion at freeway merging points as well as improving the safety of these points. On the Tokyo Metropolitan Expressway, traffic congestion frequently occurs at merging bottleneck sections, especially during heavy traffic demand. The Tokyo Metropolitan Expressway public corporation, generally applies different empirical strategies to increase the flow rate and decrease the accident rate at the merging sections. However, these strategies do not rely either on any behavioral characteristic of the merging traffic or on the geometric design of the merging segments. There have been only a few research publications concerned with traffic behavior and characteristics in these situations. Therefore, a three‐year extensive study has been undertaken to investigate traffic behavior and characteristics during the merging process under congested situations in order to design safer and less congested merging points as well as to apply more efficient control at these bottleneck sections. Two groups of strategies were investigated in this study. The First group was related to the traffic characteristics, and the second group to the geometric characteristics. In the first group, the control strategies related to closure of freeway and ramp lanes as well as lane‐changing maneuver restriction were investigated through a simulation program, detector data, and field experiment. In the second group, the angle of convergence of the ramp with the freeway in relation to merging capacity was analyzed using a simulation program. Results suggested the potential benefits of using proposed strategies developed in this work and can serve as initial guidance for the reduction of delay and improvement of safety under congested traffic conditions.  相似文献   

2.
This work investigates the effect of heavy commercial vehicles on the capacity and overall performance of congested freeway sections. Furthermore, the following behaviors of heavy commercial vehicles and its comparison with passenger cars are presented. Freeways are designed to facilitate the flow of traffic including passenger cars and trucks. The impact of these different vehicle types is not uniform, creating problems in freeway operations and safety particularly under heavy demand with a high proportion of heavy vehicles. There have been very few studies concerned with the traffic behavior and characteristics of heavy vehicles in these situations. This study draws on extensive data collected over a long stretch of freeway using videotaping and surveys at several sites. The collected data were firstly used to study the interaction between heavy vehicles and passenger cars. Through a detailed trajectory analysis, the following behaviors of 120 heavy vehicles were then analyzed to provide a thorough understanding of heavy vehicles‐following behavior mechanism. The results showed a significant difference in the following behavior of heavy vehicles compared with other vehicles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The notion of capacity is essential to the planning, design, and operations of freeway systems. However, in the practice freeway capacity is commonly referred as a theoretical/design value without consideration of operational characteristics of freeways. This is evident from the Highway Capacity Manual (HCM) 2000 in that no influence from downstream traffic is considered in the definition of freeway capacity. In contrast to this definition, in this paper, we consider the impact of downstream traffic and define freeway operational capacity as the maximum hourly rate at which vehicles can be expected to traverse a point or a uniform section of a roadway under prevailing traffic flow conditions. Therefore freeway operational capacity is not a single value with theoretical notion. Rather, it changes under different traffic flow conditions. Specifically, this concept addresses the capacity loss during congested traffic conditions. We further study the stochasticity of freeway operational capacity by examining loop detector data at three specifically selected detector stations in the Twin Cities’ area. It is found that values of freeway operational capacity under different traffic flow conditions generally fit normal distributions. In recognition of the stochastic nature of freeway capacity, we propose a new chance-constrained ramp metering strategy, in which, constant capacity value is replaced by a probabilistic one that changes dynamically depending on real-time traffic conditions and acceptable probability of risk determined by traffic engineers. We then improve the Minnesota ZONE metering algorithm by applying the stochastic chance constraints and test the improved algorithm through microscopic traffic simulation. The evaluation results demonstrate varying degrees of system improvement depending on the acceptable level of risk defined.  相似文献   

4.
Freeway‐to‐freeway connector metering is a cost‐effective and proven freeway management strategy for relieving recurrent congestion. However, one of the critical challenges in design and operation of freeway‐to‐freeway connector metering is the lack of up‐to‐date queue storage length design guidance. In this study, it was found that ramp queue is dynamically related to the metering rate, on‐ramp demand, and traffic flow arrival pattern. Hence, simply using an average demand cannot provide accurate queue length estimation and is also not suitable for queue storage design where the maximum or a percentile queue length is generally used. A mesoscopic queue length simulation model was developed based on the input–output method for estimating queue lengths under various demand‐to‐capacity ratio scenarios. Simulation results indicate that for under‐saturated situations, the ramp queue may exist temporally due to the random short‐term surge of traffic arrivals, and the exponential function could best capture the relationship between queue length and demand‐to‐capacity ratio. For over‐saturated situations, the ramp queue tends to prolong linearly with the demand‐to‐capacity ratio. Based on the simulation, it was recommended that queue storage length be designed as 4.3% of on‐ramp demand when demand is lower than 1200 vph or 2.3% when demand is between 1200 and 2400 vph. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The paper characterizes the behavior of the cell transmission model of a freeway, divided into N sections or cells, each with one on-ramp and one off-ramp. The state of the dynamical system is the N-dimensional vector n of vehicle densities in the N sections. A feasible stationary demand pattern induces a unique equilibrium flow in each section. However, there is an infinite set—in fact a continuum—of equilibrium states, including a unique uncongested equilibrium nu in which free flow speed prevails in all sections, and a unique most congested equilibrium ncon. In every other equilibrium ne one or more sections are congested, and nu  ne  ncon. Every equilibrium is stable and every trajectory converges to some equilibrium state.Two implications for ramp metering are explored. First, if the demand exceeds capacity and the ramps are not metered, every trajectory converges to the most congested equilibrium. Moreover, there is a ramp metering strategy that increases discharge flows and reduces total travel time compared with the no-metering strategy. Second, even when the demand is feasible but the freeway is initially congested, there is a ramp metering strategy that moves the system to the uncongested equilibrium and reduces total travel time. The two conclusions show that congestion invariably indicates wastefulness of freeway resources that ramp metering can eliminate.  相似文献   

6.
This paper is concerned with the macroscopic merging behavior of traffic at fully congested freeway merges, where a queue is present at all (upstream and downstream) approaches. An existing theory states that this behavior is dictated by a fixed ratio between the two upstream merging flows, denoted as the merge-ratio. It has been further conjectured that the merge-ratio is equal to the capacity-ratio. This paper presents an effective method to estimate merge-ratios from extensive historical traffic data. The archived traffic data in the California PEMS (Performance Measurement System) from January 2004 to June 2008 are used to estimate merge-ratios at 15 different freeway-to-freeway merge sites (via connectors). Findings show that merge-ratios can be reasonably estimated by the ratios between the numbers of lanes on the merging approaches (lane-ratio), which is typically similar to the capacity-ratio. However, residual differences between merge-ratios and lane-ratios suggest that there are probably other influencing factors.  相似文献   

7.
This study evaluates the expected benefits of using the ALINEA ramp metering algorithm as a method for real-time safety improvement on an urban freeway. The objective of this research is to use ramp metering to produce a significant decrease in the risk of crashes on the freeway while avoiding any significant adverse effects on operation. This is achieved by simulating the freeway during the congested period in micro-simulation and testing various ramp metering configurations to determine which provides the best results. Statistical measures developed for the same stretch of freeway using loop detector data are used to quantify the risk of crashes as well as the benefits in each of the alternative strategies. The study concludes that there are significant benefits in metering multiple ramps when the feedback ramp metering algorithm is implemented at multiple locations. It was found that increasing the number of metered on-ramps produces increasing safety benefits. Also, a shorter cycle length for each of the meters and a higher critical occupancy value leads to better results.  相似文献   

8.
This study aims at analyzing drivers' behavior in acquiring and using traffic information in an environment with multiple information sources. Accordingly, information acquisition and reference models are developed in an effort to show the empirical relationship between drivers' reaction to multiple information sources, causal factors latent psychological ones, traffic conditions at the time of traveling and the accuracy of traffic information available. A route choice model is proposed that takes into account the information acquisition and reference process. Model validity is investigated using data collected on the Tokyo Metropolitan Expressway, which has four different types of information sources.  相似文献   

9.
Frequently implemented at freeway accesses to streamline traffic, ramp-metering control strategy is often implemented during rush hours in heavily congested areas. This paper presents a novel ramp-metering control model capable of optimizing mainline traffic by providing metering rates for accesses within the control segments. Based on Payne's continuum traffic stream model, a linear dynamic model with a quadratic objective function is constructed for integrated-responsive ramp-metering control. Incorporating on-line origin–destination (OD) estimation of co-ordinated interchanges into the proposed model increases efficiency of the control. In addition, an iterative algorithm is proposed to obtain the optimal solution. Simulation results demonstrate the robustness of the proposed model and its ability to streamline freeway traffic while avoiding traffic congestion.  相似文献   

10.
This study aims to determine whether ramp meters increase the capacity of active freeway bottlenecks. The traffic flow characteristics at 27 active bottlenecks in the Twin Cities have been studied for seven weeks without ramp metering and seven weeks with ramp metering. A methodology for systematically identifying active freeway bottlenecks in a metropolitan area is proposed, which relies on two occupancy threshold values and is compared to an established diagnostic method – transformed cumulative count curves. A series of hypotheses regarding the relationships between ramp metering and the capacity of active bottlenecks are developed and tested against empirical traffic data. It is found that meters increase the bottleneck capacity by postponing and sometimes eliminating bottleneck activations, accommodating higher flows during the pre-queue transition period, and increasing queue discharge flow rates after breakdown. Results also suggest that flow drops after breakdown and the percentage flow drops at various bottlenecks follow a normal distribution. The implications of these findings on the design of efficient ramp control strategies, as well as future research directions, are discussed.  相似文献   

11.
The automated highway systems (AHS) are not designed as stand-alone transportation facilities. Drivers will by necessity drive from their origins to the AHS entrance, and from the AHS exit to their final destinations. Therefore, the AHS will affect other transportation facilities, and should be integrated with all other facilities in the transportation system. Interfaces create much of the congestion for today’s transportation systems. Likewise, AHS interfaces may cause a similar problem, due to either AHS interactions with conventional systems or internal limitations from AHS merging capabilities. If these problems exist, either the AHS or the conventional road network cannot function properly. Consequently, the system as a whole may break down and the AHS could potentially become a detriment to the overall transportation system.Clearly, not enough is known about the automated merging process to determine what conditions would lead to congestion at interface points. The current macroscopic analysis techniques assume parameters that are not applicable to an AHS, and no detailed AHS merging models have been developed and validated. This paper addresses the interface problem between an AHS, and conventional roadway. Specifically, it presents a microscopic simulation model for one scenario of the automated merging maneuver. The results of the model show that for low flows and conventional highway speeds, an one-lane AHS merging section with a dedicated automated entrance ramp has many similar characteristics as a two-lane conventional freeway with or without fixed-time ramp metering. However, when the conventional freeway starts to “break down” near its capacity, the AHS continues to perform with little delay. The model also validates that the minimum ramp length requirements are a function of the merging vehicle’s speed, the mainline vehicles’ speed, and the acceleration and deceleration rates of the merging vehicle.  相似文献   

12.
This paper presents a new approach to time-of-day control. While time-of-day control strategies presented up-to-now are only optimal under steady-state conditions, the control algorithm derived in this paper takes into account the evolution of traffic flow according to the time delay between a volume change at a ramp and its subsequent disturbance at a freeway point downstream. The new control strategy is based on the solution of a linear programming optimization problem and makes freeway volume hold the capacity constraints for the total time of control operation. In order to reduce the computational effort a simplified version of the new algorithm is also discussed. Simulation results obtained by use of two different traffic flow models show that control derived through the new algorithm can avoid congestion and ensure operation with peak performance even if a steady-state condition is never attained.  相似文献   

13.
Traffic congestion caused by traffic accidents contributes to CO2 emissions. Generally, more efficient and prompt responses to accidents lead to reduced traffic congestion as well as CO2 emissions. Here we assess the CO2 emissions impacts of freeway accidents, applies an existing model to capture spatio-temporally congested regions caused by freeway accidents. A case study for the assessment of CO2 emissions impacts of based on the results from the model is presented.  相似文献   

14.
This paper presents an alternative approach to internalize congestion externality during the morning commute. We consider a linear freeway with multiple on-ramps and a downstream bottleneck and commuters accessing the freeway via different on-ramps try to arrive at work on time. Rather than charging congestion tolls as widely suggested by economists, we show that the old-fashioned engineering approach – ramp metering – can be a powerful tool to affect travelers’ departure time choice and thereby alter the congestion externality distribution among travelers. With carefully designed time-dependent metering plans, travelers from different origins can be channelized and will access the freeway bottleneck in different time periods, resulting in less total cost for the system compared to the no-metering case. The metering strategies are Pareto-improving, with travelers from the on-ramp with the highest priority having the smallest individual costs and travelers from the on-ramp with the lowest priority having their costs equal to those in the no-metering scenario. By changing the priority order of the ramps periodically, the benefit of the Pareto-improving metering strategies can be distributed evenly among all travelers. Numerical experiments show that the total user cost can be reduced by up to 40% with the proposed metering strategies. This study offers researchers and policy makers a different angle of looking at congestion externality, and the results provide an overview of the potential long term benefits that dynamic ramp metering strategies can achieve.  相似文献   

15.
A simple model of traffic flow is used to analyze the spatio-temporal distribution of flow and density on closed-loop homogeneous freeways with many ramps, which produce inflows and allow outflows. As we would expect, if the on-ramp demand is space-independent then this distribution tends toward uniformity in space if the freeway is either: (i) uncongested; or (ii) congested with queues on its on-ramps and enough inflow to cause the average freeway density to increase with time. In all other cases, however, including any recovery phase of a rush hour where the freeway’s average density declines, the distribution of flow and density quickly becomes uneven. This happens even under conditions of perfect symmetry, where the percentage of vehicles exiting at every off ramp is the same. The flow-density deviations from the average are shown to grow exponentially in time and propagate backwards in space with a fixed wave speed. A consequence of this type of instability is that, during recovery, gaps of uncongested traffic will quickly appear in the unevenly congested stream, reducing average flow. This extends the duration of recovery and invariably creates clockwise hysteresis loops on scatter-plots of average system flow vs. density during any rush hour that oversaturates the freeway. All these effects are quantified with formulas and verified with simulations. Some have been observed in real networks. In a more practical vein, it is also shown that the negative effects of instability diminish (i.e., freeway flows increase) if (a) some drivers choose to exit the freeway prematurely when it is too congested and/or (b) freeway access is regulated in a certain traffic-responsive way. These two findings could be used to improve the algorithms behind VMS displays for driver guidance (finding a), and on-ramp metering rates (finding b).  相似文献   

16.
Travel time information influences driver behaviour and can contribute to reducing congestion and improving network efficiency. Consequently many road authorities disseminate travel time information on road side signs, web sites and radio traffic broadcasts. Operational systems commonly rely on speed data obtained from inductive loop detectors and estimate travel times using simple algorithms that are known to provide poor predictions particularly on either side of the peak period. This paper presents a new macroscopic model for predicting freeway travel times which overcomes the limitations of operational ‘instantaneous’ speed models by drawing on queuing theory to model the processing of vehicles in sections or cells of the freeway. The model draws on real-time speed, flow and occupancy data and is formulated to accommodate varying geometric conditions, the relative distribution of vehicles along the freeway, variations in speed limits, the impact of ramp flows and fixed or transient bottlenecks. Field validation of the new algorithm was undertaken using data from two operational freeways in Melbourne, Australia. Consistent with the results of simulation testing, the validation confirmed that the recursive model provided a substantial improvement in travel time predictions when compared to the model currently used to provide real-time travel time information to motorists in Melbourne.  相似文献   

17.
This article presents a study on freeway networks instrumented with coordinated ramp metering and the ability of such control systems to produce arbitrarily complex congestion patterns within the dynamical limits of the traffic system. The developed method is used to evaluate the potential for an adversary with access to control infrastructure to enact high-level attacks on the underlying freeway system. The attacks are executed using a predictive, coordinated ramp metering controller based on finite-horizon optimal control and multi-objective optimization techniques. The efficacy of the control schemes in carrying out the prescribed attacks is determined via simulations of traffic network models based on the cell transmission model with onramps modeled as queue buffers. Freeway attacks with high-level objectives are presented on two illustrative examples: congestion-on-demand, which aims to create precise, user-specified pockets of congestion, and catch-me-if-you-can, which attempts to aid a fleeing vehicle from pursuant vehicles.  相似文献   

18.
Measurements taken downstream of freeway/on-ramp merges have previously shown that discharge flow diminishes when a merge becomes an isolated bottleneck. By means of observation and experiment, we show here that metering an on-ramp can recover the higher discharge flow at a merge and thereby increase the merge capacity. Detailed observations were collected at a single merge using video. These data revealed that the reductions in discharge flow are triggered by a queue that forms near the merge in the freeway shoulder lane and then spreads laterally, as drivers change lanes to maneuver around slow traffic. Our experiments show that once restrictive metering mitigated this shoulder lane queue, high outflows often returned to the median lane. High merge outflows could be restored in all freeway lanes by then relaxing the metering rate so that inflows from the on-ramp increased. Although outflows recovered in this fashion were not sustained for periods greater than 13 min, the findings are the first real evidence that ramp metering can favorably affect the capacity of an isolated merge. Furthermore, these findings point to control strategies that might generate higher outflows for more prolonged periods and increase merge capacity even more. Finally, the findings uncover details of merge operation that are essential for developing realistic theories of merging traffic.  相似文献   

19.
This paper presents a real-time traffic network state estimation and prediction system with built-in decision support capabilities for traffic network management. The system provides traffic network managers with the capabilities to estimate the current network conditions, predict congestion dynamics, and generate efficient traffic management schemes for recurrent and non-recurrent congestion situations. The system adopts a closed-loop rolling horizon framework in which network state estimation and prediction modules are integrated with a traffic network manager module to generate efficient proactive traffic management schemes. The traffic network manger adopts a meta-heuristic search mechanism to construct the schemes by integrating a wide variety of control strategies. The system is applied in the context of Integrated Corridor Management (ICM), which is envisioned to provide a system approach for managing congested urban corridors. A simulation-based case study is presented for the US-75 corridor in Dallas, Texas. The results show the ability of the system to improve the overall network performance during hypothetical incident scenarios.  相似文献   

20.
Understanding the variability of speed patterns and congestion characteristics of interstate freeway systems caused by holiday traffic is beneficial because appropriate countermeasures for safety improvement and congestion mitigation can be prepared and drivers can avoid traffic congestion and change their holiday travel schedules. This study evaluated the traffic congestion patterns during the Thanksgiving holiday period in 2006 using a Gaussian mixture speed distribution estimated by the Expectation–Maximization (EM) algorithm. This mathematical approach showed the potential of improving freeway operational performance evaluation schemes for holiday periods (even non-holiday periods). This study suggested that a Gaussian mixture model using the EM algorithm could be used to properly characterize the severity and the variability of congestion on certain interstate roadway systems. However, this study also pointed out that the fundamental limitations of the mixture model and the statistical significance test about the mixture components should be well understood and need to be further investigated. In addition, because this study investigated the changing patterns of speed distributions with only one interstate freeway system, I-95 northbound, other freeway systems with both directions need to be evaluated so that a more broad and confident analysis on holiday traffic can be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号