首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
近年来,许多发动机研究部门和铸铁工作者在寻求提高气缸套耐磨性方面做了大量的工作,除传统合金和高磷铸铁气缸套外,还出现了含硼或稀有元素铸铁的气缸套,从而延长了发动机的使用寿命.我厂生产的“高硅锰铸铁气缸套”,就是在这种形势下结合贵州原材料特  相似文献   

2.
发动机的耐用性在很大程度上取决于气缸-活塞组各零件;首先是缸套的耐磨性.用非合金铸铁制造的缸套在使用条件恶劣的情况下,磨料磨损过程加剧,摩擦表面的热效应增强,不能保证发动机的耐用性.有些厂在缸套壁上镶嵌耐热镍合金垫片,虽然气缸-活塞组的强度有所提高,但也存在对摩擦副的某些不良影响.实验室和实车试验已  相似文献   

3.
现代汽车发动机的不断强化,要求气缸套必须具有更高的强度、刚度、耐热性和耐磨性。迄今为止,铸铁尤其是合金铸铁以其耐磨性好、制造方便、成本低等特点,一直居于气缸套材料的首要地位。实践  相似文献   

4.
斯太尔WD615型柴油机采用耐磨性较高的高磷铸铁、干式薄壁气缸套(壁厚为2哪)。为了改善气缸内壁的磨合性能和吸附机油的性能,对气缸套内壁采用珩磨加工。在活塞头部边缘处有18道细槽,在活塞的第1道环槽内有奥氏体铸铁护圈,并且在活塞裙部有2-3μm厚的石墨层。为了防止活塞工作时的温度过高,在发动机的润滑油路中设置了6只喷油嘴向活塞喷射机油,冷却活塞。  相似文献   

5.
9、发动机气缸体的作用及结构特点是什么? 发动机气缸体的作用是形成气缸的工作容积及活塞运动的导向。摩托车发动机气缸体一般采用优质合金铸铁材料作气缸筒;然后,气缸筒作为嵌件压铸在铝合金的气缸套中,形成一个完整的气缸体组合,气缸体组合的  相似文献   

6.
基于有限元方法建立了活塞组摩擦产热计算模型,通过发动机工作过程的计算得到了活塞组摩擦产热计算所需的运动学和动力学边界。以某12缸增压柴油机为研究对象,计算得到了标定工况下其活塞组瞬时摩擦力及瞬时摩擦产热功率随曲轴转角的变化,活塞组平均摩擦产热总功率及其在活塞环、活塞裙部、气缸套的分配,以及活塞组摩擦产热所导致的活塞组、气缸套温升情况,计算分析了转速和负荷对活塞组摩擦产热的影响。  相似文献   

7.
据预测,卡车柴油机功率的提高会进一步增加铸铁活塞和钢活塞的需求量,因而对活塞的润滑状态进行了研究。采用浮动衬套法对铸铁活塞和钢活塞的摩擦特性进行了测量分析,为了便于比较,也给出了传统铝活塞的摩擦特性。为了分析活塞的摩擦特性及研究中的新发现,对活塞的二阶运动也进行了测量分析。研究结果表明,铸铁活塞在压缩上止点为边界润滑状态,其原因可能是活塞与气缸套间隙过大导致活塞倾斜角度过大,钢活塞由于裙部机油润滑充分,在上止点及下止点处于流体润滑状态。  相似文献   

8.
活塞起着压缩燃料与空气并通过燃烧膨胀将力传给曲柄连杆的作用,对发动机的寿命起着非常重要的作用。1 活塞材料摩托车发动机活塞广泛采用铝硅合金。随着硅含量的增加,铝硅合金的线性膨胀系数下降,耐磨性、  相似文献   

9.
为提高汽车发动机活塞环的使用寿命,开展了铌合金铸铁环的研制。文中介绍了产品在广东地区装车试验经四年的情况。铌合金铸铁活塞环的寿命里程普遍达到120000~140000km,高者可达150000~160000km,与铬钼铸铁环相比使用寿命可提高一倍。与铌合金铸铁相配的气缸套的磨损量也减少三分之一。  相似文献   

10.
<正> 活塞是决定发动机寿命的主要零件之一,而活塞最薄弱的部位是上活塞环槽(气环用槽)。因此,为了提高上活塞环槽的耐磨性,通常是在该处,安装耐蚀高镍铸铁,灰铸铁或钢制嵌件。但这种方法不够可靠,因为难以保证嵌件与基体材料的结合质量。另外,由于难以获得均匀的强化层,所以还不能利用氩弧堆焊,等离子堆焊以及电子束堆焊等方法来强化活塞环槽。因此,汽车工业工艺研究所的专家们提出了自己的方法——采取用激光熔化耐磨配料使铝活塞环槽区合金化。  相似文献   

11.
活塞裙部型线是关键设计参数之一,会对水平位移、倾斜运动、机油输送,以及发动机性能产生重要影响。该项研究提出了一种旨在减少活塞与气缸套之间摩擦损失的新型活塞裙部型线。  相似文献   

12.
前言目前一些汽车制造厂、汽车配件厂和汽车保养场为提高汽车产品质量,作了很大努力,并收到了一定的效果。其中对影响汽车发动机大修寿命的气缸套的耐磨性,作了较多的工作。提高汽车发动机气缸套的耐磨性,对于提高汽车工作可靠性和延长汽车大修间隔里程,具有极其重要的意义。  相似文献   

13.
一般认为活塞组摩擦损失占发动机总机械功率损失的很大比例。在工作温度下,保持适宜的工作裙部型面和裙部与缸套之间的间隙,对于减少活塞摩擦是非常必要的。现代汽车发动机活塞是由铝合金制成,其热膨胀系数比发动机缸体常用的铸铁材料的热膨胀系数高80%。因此,发动机工作状况时的工作间隙与设计间隙回然不同,所以很需要一个能够计算活塞热膨胀的方法。 本文中,提出了一种三维有限元模型,用来计算活塞的工作温度及其相应的热膨胀,所说的活塞具有不对称的结构特点,如贯通槽、钢嵌片和活塞销座。模型可以用来进行裙部型面的设计,而型面设计很有潜力,能减少磨合时间,减轻摩擦和使活塞的敲击声降至最低限度。  相似文献   

14.
本文研究了发动机铸铁材料的组织和化学成分对其导热性能的影响。试验结果表明:灰铸铁的热扩散性能明显优于蠕墨铸铁,但随着温度的升高其差别越小;灰铸铁碳含量越高热扩散性能越好,蠕墨铸铁蠕化率越高热扩散性能越好;化学元素中Si能够明显降低铸铁热扩散性能,而其他合金元素对热扩散性能影响较小。  相似文献   

15.
邱志雷 《驾驶园》2011,(4):59-61
活塞环的性能与寿命跟发动机的工作性能有着直接关系,因此,延长活塞环的使用寿命显得很重要。可以从以下几个方面做起:1合理选材活塞环装在活塞的头部,工作条件十分恶劣,是在高温、高压、高速及润滑条件极差的情况下工作的,因此要求活塞环的材料应具备良好的耐热性、导热性、耐磨性,有一定的韧性、弹性和足够的强度等。目前,广泛采用的活塞环材料为优质灰铸铁、  相似文献   

16.
随着发动机性能指标的不断提高,对发动机活塞材料提出了新的更高的要求。在这种情况下,对过共晶Al-Si 合金的实验研究工作日益深入。通过实验研究发现,这种合金作为活塞材料,具有突出的优点:热膨胀系数小。Al-Si 系合金的热膨胀系数随硅含量提高而降低,过共晶Al-Si 合金的热膨胀系数比现用的所有活塞材料都小,用这种合金制造的活塞,容许较小的配缸间隙而不致发生拉缸现象。耐磨性好。这种合金的金相组织的特点使之具有好的耐磨性,可以延长活塞的使用寿命。较高的强度。特别是高温强度较高,可以保证发动机安全运转。  相似文献   

17.
压力下的活塞润滑为了提高内燃机功率和燃油效率的要求,工程师们对发动机重新进行了设计。重新设计后,活塞受影响程度最大,因为其与气缸处摩擦的增强不仅会影响活塞性能,而且还会损坏整个发动机。为了提高活塞应对被增加的摩擦力的能力并提高发动机的工作性能,与过去的活塞相比,现在的活塞重量更轻、热膨胀更小、热传导性更好。但在做功;中程期间,  相似文献   

18.
在进行发动机大修时,铸铁缸套或合金铸铁缸套缸壁间隙的选择、气缸镗削定位基准的选择以及气缸珩磨后切削交角的选择等是镗缸过程中十分关心的问题.因为如果缸壁间隙相差1mm,则汽车要少行10000km;镗缸定位基准选择不当,可能会产生全部活塞装配后都向同一方向偏斜等现象,而切削角选择不当,就不能在缸壁上贮油,会大大降低气缸在磨合阶段的耐磨性.本文在总结公司多年维修经验的基础上提出几个镗磨时应注意的问题.  相似文献   

19.
亚共晶铝—硅合金是针对我国目前使用最多的汽车发动机而试验成功的一种活塞材料。它具有较高的机械、物理性能和优良的工艺性能。发动机台架试验和装车使用试验结果表明,用这种合金生产解放牌CA—10B发动机活塞,可以解决冷敲击和热拉缸的问题,并提高使用寿命。此外,这种合金成本较低,并可节省铜。这种合金已由全国活塞行业组推荐,取代ZL3合金来生产汽油机活塞。  相似文献   

20.
商用车发动机发展的根本驱动力是提高燃油效率及满足愈加严格的废气排放法规,这为发动机零部件,特别是活塞环的开发提出了重大挑战。在动力气缸中,活塞环组是摩擦损失的重要部件,活塞环组的摩擦损失占发动机总机械摩擦损失的25%,相应影响燃油耗高达4%。要在不影响机油消耗的前提下,减小摩擦功率损失,同时满足由于功率密度增加、缸孔更平滑、润滑减少,以及使用代用燃料等越来越多的活塞环热机械学和摩擦学要求。在这种情况下,以耐磨性和抗刮擦性为特征的活塞环工作表面的可靠性发挥着日益重要的作用。活塞环表面涂层作为关键设计要素,必然是解决活塞环/气缸套摩擦学系统摩擦损失和增加可靠性的主要焦点之一。概述了新一代四面体非晶质碳基(ta-C)活塞环涂层的开发,这项名为"DuroGlide"的活塞环涂层在提高产品性能、减小摩擦方面树立了新的标准。DuroGlide 涂层活塞环与其他同类产品相比,具有更出色的耐久性、耐磨性和抗刮擦性,结合先进的顶环和油环设计,可使商用车发动机节省燃油耗多达1.2%。介绍了DuroGlide涂层如何提供优越的耐磨性和抗刮擦性,从而在润滑条件不良的情况下具有更高的性能和燃油效率。最后,总结了上压缩环和油环的台架试验和发动机验证的基本结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号