首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper assesses alternative fuel options for transit buses. We consider the following options for a 40-foot and a 60-foot transit bus: a conventional bus powered by either diesel or a biodiesel blend (B20 or B100), a diesel hybrid-electric bus, a sparking-ignition bus powered by Compressed Natural Gas (CNG) or Liquefied Natural Gas (LNG), and a battery electric bus (BEB) (rapid or slow charging). We estimate life cycle ownership costs (for buses and infrastructure) and environmental externalities caused by greenhouse gases (GHGs) and criteria air pollutants (CAPs) emitted from the life cycle of bus operations. We find that all alternative fuel options lead to higher life cycle ownership and external costs than conventional diesel. When external funding is available to pay for 80% of vehicle purchase expenditures (which is usually the case for U.S. transit agencies), BEBs yield large reductions (17–23%) in terms of ownership and external costs compared to diesel. Furthermore, BEBs’ advantages are robust to changes in operation and economic assumptions when external funding is available. BEBs are able to reduce CAP emissions significantly in Pittsburgh’s hotspot areas, where existing bus fleets contribute to 1% of particulate matter emissions from mobile sources. We recognize that there are still practical barriers for BEBs, e.g. range limits, land to build the charging infrastructure, and coordination with utilities. However, favorable trends such as better battery performance and economics, cleaner electricity grid, improved technology maturity, and accumulated operation experience may favor use of BEBs where feasible.  相似文献   

2.
A latent class model is developed to accommodate preference heterogeneity across commuters with respect to their mode choice between electric bike, private car, and public bus within the context of China. A three-segment solution – ‘electric bike individuals’, ‘private car addicts’, and ‘public bus enthusiasts’ – is identified, each characterized by heterogeneous preferences regarding specific mode attributes and unique socio-demographic profile. The choice model confirms the determinative effects of perceived alternative attributes on commuting mode choice, while the traditionally used objective attributes – travel time and cost – are found to have relatively small influences. The membership model provides solid explanations for these segment-specific preferences. This study provides a better understanding of the nature of mode choice behavior, which can be useful for strategies tailored to a specific segment in order to promote the use of sustainable transport modes.  相似文献   

3.
One of the CIVITAS-ELAN project measures in Ljubljana, Slovenia, was the introduction of alternative city bus propulsion systems (CNG, hydraulic hybrid buses) into the public transport and comparison of their performance in terms of costs and benefits with conventional (diesel) buses. A cost-benefit analysis was conducted to provide a model for identifying the most attractive alternative, with aim of aiding the decision making process for future rational up-scaling of the alternative propulsion technologies in PT fleet in Ljubljana. This paper focuses on presenting the key findings of this CBA, using real driving data, while demonstrating the sensitivity/variance of different parameters of a CBA, as well as the differentiation between uncertainties of parameters in an ex-ante analysis versus an ex-post analysis.  相似文献   

4.
Travel by a Personal Rapid Transit (PRT) system may be much more energy efficient than travel by conventional road transport. The difference could be so large that the energy invested in the PRT infrastructure may be equivalent to the fuel that is saved by previous car and bus riders in less than five years. We analyzed the propulsion energy requirements of a PRT system and made a first-order calculation of the energy cost of the infrastructure and maintenance. Operation of the PRT requires only half the energy required by buses and a quarter of the energy used by passenger cars per passenger kilometer. The energy used to build the PRT infrastructure in a city may be recovered in five years if 10% of the car drivers switch to the PRT.  相似文献   

5.
In many cities, diesel buses are being replaced by electric buses with the aim of reducing local emissions and thus improving air quality. The protection of the environment and the health of the population is the highest priority of our society. For the transport companies that operate these buses, not only ecological issues but also economic issues are of great importance. Due to the high purchase costs of electric buses compared to conventional buses, operators are forced to use electric vehicles in a targeted manner in order to ensure amortization over the service life of the vehicles. A compromise between ecology and economy must be found in order to both protect the environment and ensure economical operation of the buses.In this study, we present a new methodology for optimizing the vehicles’ charging time as a function of the parameters CO2eq emissions and electricity costs. Based on recorded driving profiles in daily bus operation, the energy demands of conventional and electric buses are calculated for the passenger transportation in the city of Aachen in 2017. Different charging scenarios are defined to analyze the influence of the temporal variability of CO2eq intensity and electricity price on the environmental impact and economy of the bus. For every individual day of a year, charging periods with the lowest and highest costs and emissions are identified and recommendations for daily bus operation are made. To enable both the ecological and economical operation of the bus, the parameters of electricity price and CO2 are weighted differently, and several charging periods are proposed, taking into account the priorities previously set. A sensitivity analysis is carried out to evaluate the influence of selected parameters and to derive recommendations for improving the ecological and economic balance of the battery-powered electric vehicle.In all scenarios, the optimization of the charging period results in energy cost savings of a maximum of 13.6% compared to charging at a fixed electricity price. The savings potential of CO2eq emissions is similar, at 14.9%. From an economic point of view, charging between 2 a.m. and 4 a.m. results in the lowest energy costs on average. The CO2eq intensity is also low in this period, but midday charging leads to the largest savings in CO2eq emissions. From a life cycle perspective, the electric bus is not economically competitive with the conventional bus. However, from an ecological point of view, the electric bus saves on average 37.5% CO2eq emissions over its service life compared to the diesel bus. The reduction potential is maximized if the electric vehicle exclusively consumes electricity from solar and wind power.  相似文献   

6.
This paper proposes an optimization model to minimize the “system costs” and guide travelers' behavior by exploring the optimal bus investment and tradable credits scheme design in a bimodal transportation system. Travelers' transport mode choice behavior (car or bus) and the modal equilibrium conditions between these two forms of transport are studied in the tradable credits scheme. Public transport priority is highlighted by charging car travelers credits only. The economies of scale presented by the transit system under the tradable credit scheme are analyzed by comparing the marginal cost and average cost. Numerical examples are presented to demonstrate the model. Furthermore, the effects of tradable credits schemes on bus investment and travelers' modal choice behavior are explored based on scenario discussions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The paper explores what can occur when select street lanes throughout a city are periodically reserved for buses. Simulations of an idealized city were performed to that end. The city’s time-varying travel demand was studied parametrically. In all cases, queues formed throughout the city during a rush, and dissipated during the off-peak period that followed. Bus lanes were activated all at once across the city, and were eventually deactivated in like fashion. Activation and deactivation schedules varied parametrically as well. Schedules that roughly balanced the trip-time savings to bus riders against the added delays to car travelers were thus identified.Findings reveal why activating conversions near the start of a rush can degrade travel, both by car and by bus. Balance was struck by instead activating lane conversions nearer the end of the rush, when vehicle accumulation in the city was at or near its maximum. Most of the time savings to bus riders accrued after the conversions had been left in place for only 30 min. Leaving them for longer durations often brought modest additional savings to bus travelers. Yet, the added delays to cars often grew large as a result.These findings held even when buses garnered high ridership shares. This was the case when lane conversions gradually induced new bus trips among residents who formerly did not travel. It was also true when high ridership was a pre-existing feature of the city. Activating conversions a bit earlier in a rush was found to make sense only if commuters shifted from cars to buses in very large numbers. Findings also unveiled how to fine-tune activation and deactivation schedules to suit a city’s congestion level. Guidelines for scheduling conversions in real settings are furnished. So is discussion on how these schedules might be adapted to daily variations in city-wide traffic states. Roles for technology are discussed as well.  相似文献   

8.
Charging infrastructure requirements are being largely debated in the context of urban energy planning for transport electrification. As electric vehicles are gaining momentum, the issue of locating and securing the availability, efficiency and effectiveness of charging infrastructure becomes a complex question that needs to be addressed. This paper presents the structure and application of a model developed for optimizing the distribution of charging infrastructure for electric buses in the urban context, and tests the model for the bus network of Stockholm. The major public bus transport hubs connecting to the train and subway system show the highest concentration of locations chosen by the model for charging station installation. The costs estimated are within an expected range when comparing to the annual bus public transport costs in Stockholm. The model could be adapted for various urban contexts to promptly assist in the transition to fossil-free bus transport. The total costs for the operation of a partially electrified bus system in both optimization cases considered (cost and energy) differ only marginally from the costs for a 100% biodiesel system. This indicates that lower fuel costs for electric buses can balance the high investment costs incurred in building charging infrastructure, while achieving a reduction of up to 51% in emissions and up to 34% in energy use in the bus fleet.  相似文献   

9.
A review of the retailing and transportation literature shows that there is an apparently large research gap in the understanding of shoppers’ attitudes towards transport modes for shopping purposes. In particular, not many studies have been done to examine shoppers’ detailed and disaggregated attitudinal image structures of the various transport modes for shopping purposes. Using Singapore as a study area, this paper has attempted to investigate shoppers’ image structure of transport modes and their comparative perception ratings for the various modes of transportation for shopping purposes. Using principal component analysis, the research has unveiled the perceptions of five transport modes for shopping purposes. While some of the factors are unique to certain transport modes, other factors, namely ‘suitability’, ‘practicality’, ‘ease of travel’ and ‘cost’, are common to all modes of transportation. By way of the weighted‐factor rating, the study found that the car recorded the highest overall perception rating while the bus rated the lowest. In addition, the shoppers have reasonably good perception of public transport modes in Singapore.  相似文献   

10.
This paper presents a cost-benefit analysis (CBA) of hybrid and electric city buses in fleet operation. The analysis is founded on an energy consumption analysis, which is carried out on the basis of extensive simulations in different bus routes. A conventional diesel city bus is used as a reference for the CBA. Five different full size hybrid and electric city bus configurations were considered in this study; two parallel and two series hybrid buses, and one electric city bus. Overall, the simulation results indicate that plug-in hybrid and electric city buses have the best potential to reduce energy consumption and emissions. The capital and energy storage system costs of city buses are the most critical factors for improving the cost-efficiency of these alternative city bus configurations. Furthermore, the operation schedule and route planning are important to take into account when selecting hybrid and electric city buses for fleet operation.  相似文献   

11.
ABSTRACT

This paper develops cost models for urban transport infrastructure options in situations where motorcycles and various forms of taxis are important modes of transport. The total social costs (TSCs) of conventional bus, Bus Rapid Transit (BRT), Monorail, Metro (Elevated Rail), car, motorcycle, Taxi and Uber are calculated for an urban corridor covering operator, user and external costs. Based on the parameters for a 7?km corridor in Hanoi, Vietnam, the results show the lowest average social cost (ASC) transport modes for different ranges of demand. Motorcycle might be the best option at low demand levels while conventional bus has advantages with low-medium demand. At medium demand levels, bus-based technologies and Monorail are competitive options while Metro, with a higher person capacity, is the best alternative at the highest demand levels. Compared to other modes, the ASCs of car and Taxi/Uber are greater because of high capital cost (related to vehicles) per passenger and low occupancy. Transport planners and decision makers in low and middle income countries (LMICs) can draw on the findings of this study. However, various limitations are identified and additional research is suggested.  相似文献   

12.
A number of studies have shown that in addition to travel time and cost as the common influences on mode, route and departure time choices, travel time variability plays an increasingly important role, especially in the presence of traffic congestion on roads and crowding on public transport. The dominant focus of modelling and implementation of optimal pricing that incorporates trip time variability has been in the context of road pricing for cars. The main objective of this paper is to introduce a non-trivial extension to the existing literature on optimal pricing in a multimodal setting, building in the role of travel time variability as a source of disutility for car and bus users. We estimate the effect of variability in travel time and bus headway on optimal prices (i.e., tolls for cars and fares for buses) and optimal bus capacity (i.e., frequencies and size) accounting for crowding on buses, under a social welfare maximisation framework. Travel time variability is included by adopting the well-known mean–variance model, using an empirical relationship between the mean and standard deviation of travel times. We illustrate our model with an application to a highly congested corridor with cars, buses and walking as travel alternatives in Sydney, Australia. There are three main findings that have immediate policy implications: (i) including travel time variability results in higher optimal car tolls and substantial increases in toll revenue, while optimal bus fares remain almost unchanged; (ii) when bus headways are variable, the inclusion of travel time variability as a source of disutility for users yields higher optimal bus frequencies; and (iii) including both travel time variability and crowding discomfort leads to higher optimal bus sizes.  相似文献   

13.
Electric transit buses have been recognized as an important alternative to diesel buses with many environmental benefits. Electric buses employing lithium titanate batteries can provide uninterrupted transit service thanks to their ability of fast charging. However, fast charging may result in high demand charges which will increase the fuel costs thereby limiting the electric bus market penetration. In this paper, we simulated daily charging patterns and demand charges of a fleet of electric buses in Tallahassee, Florida and identified an optimal charging strategy to minimize demand charges. It was found that by using a charging threshold of 60–64%, a $160,848 total saving in electricity cost can be achieved for a five electric bus fleet, comparing to a charging threshold of 0–28%. In addition, the impact of fleet sizes on the fuel cost was investigated. Fleets of 4 and 12 buses will achieve the lowest cost per mile driven when one fast charger is installed.  相似文献   

14.
In France, Germany and Spain, the availability of computer‐generated itineraries to travellers in the street is still very limited, though growing slowly. Although many French towns have an effective passenger information system via Minitel, which will calculate itineraries, this is available only from the home. The vast majority of decisions about routes for journeys by urban public transport are still made using the traditional forms of spatial information abundantly displayed at bus stops and in vehicles: usually a map of the network and diagrammatic maps of individual bus or underground lines. Unfortunately a map of the whole network is often too complicated to yield the desired information easily. Alternatively the traveller may have the difficult task of comparing several diagrammatic maps of the individual lines departing from that bus stop, none of which alone can answer his spatial query: which bus lines, if any, go to my destination? The priority for the application of the computer should be the use of a geographic information system to generate automatically two types of less‐complicated map. The ‘stop‐specific route map’ shows on one piece of paper the routes of all buses from that stop, excluding of course the portions before the stop. The ‘zone map’ shows only the bus lines which serve a specific limited zone of the city, including at a reduced scale the portions extending out to their various destinations beyond the limits of the zone itself.  相似文献   

15.
This paper models part of a public transport network (PTN), specifically, a bus route, as a small-size multi-agent system (MAS). The proposed approach is applied to a case study considering a ‘real world’ bus line within the PTN in Auckland, New Zealand. The MAS-based analysis uses modeling and simulation to examine the characteristics of the observed system – autonomous agents interacting with one another – under different scenarios, considering bus capacity and frequency of service for existing and projected public transport (PT) demand. A simulation model of a bus route is developed, calibrated and validated. Several results are attained, such as when the PT passenger load is not close to bus capacity, this load has no effect on average passenger waiting time at bus stops. The model proposed can be useful to practitioners as a tool to model the interaction between buses and other agents.  相似文献   

16.
Urban passenger transport significantly contributes to global greenhouse gas emissions, especially in developing countries owing to the rapid motorization, thus making it an important target for carbon reduction. This article established a method to estimate and analyze carbon emission from urban passenger transport including cars, rail transit, taxis and buses. The scope of research was defined based on car registration area, transport types and modes, the stages of rail transit energy consumption. The data availability and gathering were fully illustrated. A city level emission model for the aforementioned four modes of passenger transport was formulated, and parameters including emission factor of electricity and fuel efficiency were tailored according to local situations such as energy structure and field survey. The results reveal that the emission from Beijing’s urban passenger transport in 2012 stood at 15 million tonnes of CO2, of which 75.5% was from cars, whereas car trip sharing constitutes only 42.5% of the total residential trips. Bus travel, yielding 28.6 g CO2, is the most efficient mode of transport under the current situations in terms of per passenger kilometer (PKM) emission, whereas car or taxi trips emit more than 5 times that of bus trips. Although a decrease trend appears, Beijing still has potential for further carbon reduction in passenger transport field in contrast to other cities in developed countries. Development of rail transit and further limitation on cars could assist in reducing 4.39 million tonnes CO2 emission.  相似文献   

17.
This paper presents a life cycle assessment comparing diesel buses with buses fueled by natural gas. The data for the emission of pollutants are based on the MEET Project of the European Commission (EC), supplemented by data measured for diesel and gas buses in Paris. The benefits of the gas fueled bus are then quantified using the damage cost estimates of the ExternE Project of the EC. A diesel bus with emissions equal to Standard EURO2 of the EC is compared with the same bus equipped with a natural gas engine, for use in Paris and in Toulouse. The damage cost of a diesel bus is significant, in the range of 0.4–1.3
/km. Natural gas allows an appreciable reduction of the emissions, lowering the damage cost by a factor of about 2.5 (Toulouse) to 5.5 (Paris). An approximate rule is provided for transferring the results to other cities. A sensitivity analysis is carried out to evaluate the effect of the evolution of the emissions standard towards EURO3, 4 and 5, as well as the effect of uncertainties. Finally a comparison is presented between a EURO2 diesel bus with particle filter, and a gas fueled bus with the MPI engine of IVECO, a more advanced and cleaner technology. With this engine the damage costs of the gas fueled bus are about 3–5 times lower than those of the diesel with particle filter, even though the latter has already very low emissions.  相似文献   

18.
Although real-time Automatic Vehicle Location (AVL) data is being utilised successfully in the UK, little notice has been given to the benefits of historical (non-real-time) AVL data. This paper illustrates how historical AVL data can be used to identify segments of a bus route which would benefit most from bus priority measures and to improve scheduling by highlighting locations at which the greatest deviation from schedule occurs. A new methodology which uses historical AVL data and on-bus passenger counts to calculate the passenger arrival rate at stops along a bus route has been used to estimate annual patronage and the speed of buses as they move between stops. Estimating the patronage at stops using AVL data is more cost-effective than conventional methods (such as surveys at stops which require much more manpower) but retains the benefits of accuracy and stop-specific estimates of annual patronage. The passenger arrival rate can then be used to calculate how long buses spend at stops. If the time buses spend at stops is removed from the total time it takes the bus to traverse a link, the remaining amount of time can be assumed to be the time the bus spends moving and hence the moving speed of the bus can be obtained. It was found that estimation of patronage and the speed of buses as they move between stops using AVL data produced results which were comparable with those obtained by other methods. However the main point to note is that this new method of estimating patronage has the potential to provide a larger and superior data set than is otherwise available, at very low cost.  相似文献   

19.
Climate change is one of the most critical environmental challenges faced in the world today. The transportation sector alone contributes to 22% of carbon emissions, of which 80% are contributed by road transportation. In this paper we investigate the potential private car greenhouse gas (GHG) emissions reduction and social welfare gains resulting from upgrading the bus service in the Greater Beirut Area. To this end, a stated preference (SP) survey on mode switching from private car to bus was conducted in this area and analyzed by means of a mixed logit model. We then used the model outputs to simulate aggregate switching behavior in the study area and the attendant welfare and environmental gains and private car GHG emissions reductions under various alternative scenarios of bus service upgrade. We recommend a bundle of realistic bus service improvements in the short term that will result in a reasonable shift to buses and measurable reduction in private car emissions. We argue that such improvements will need to be comprehensive in scope and include both improvements in bus level of service attributes (access/egress time, headway, in-vehicle travel time, and number of transfers) and the provision of amenities, including air-conditioning and Wi-Fi. Moreover, such a service needs to be cheaply priced to achieve reasonably high levels of switching behavior. With a comprehensively overhauled bus service, one would expect that bus ridership would increase for commuting purposes at first, and once the habit for it is formed, for travel purposes other than commuting, hence dramatically broadening the scope of private car GHG emissions reduction. This said, this study demonstrates the limits of focused sectorial policies in targeting and reducing private car GHG emissions, and highlights the need for combining behavioral interventions with other measures, most notably technological innovations, in order for the contribution of this sector to GHG emissions mitigation to be sizable.  相似文献   

20.
Despite widespread growth in on-road public transport priority schemes, road management authorities have few tools to evaluate the impacts of these schemes on all road users. This paper describes a methodology developed in Melbourne, Australia to assist the road management authority, VicRoads, evaluate trade-offs in the use of its limited road-space for new bus and tram priority projects. The approach employs traffic micro-simulation modelling to assess road-space re-allocation impacts, travel behaviour modelling to assess changes in travel patterns and a social cost benefit framework to evaluate impacts. The evaluation considers a comprehensive range of impacts including the environmental benefits of improved public transport services. Impacts on public transport reliability improvements are also considered. Although improved bus and tram reliability is a major rationale for traffic priority its use in previous evaluations is rare. The paper critiques previous approaches, describes the proposed method and explores some of the results found in its application. A major finding is that despite a more comprehensive approach to measuring the benefits of bus and tram priority, road-space reallocation is difficult to economically justify in road networks where public transport usage is low and car usage high. Strategies involving the balanced deployment of bus and tram priority measures where the allocation of time and space to PT minimises negative traffic impacts is shown to improve the overall management of road-space. A discussion of the approach is also provided including suggestions for further methodology development.
Bill YoungEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号