首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究大跨度邻近桥梁的气动干扰效应,本文以2座大跨度桥梁为对象,基于CFD(Computational Fluid Dynamics)数值模拟研究不同间距比和风攻角下气动干扰效应对静力三分力系数的影响,以及不同间距比和折算风速对颤振导数的影响。结果表明:上游桥梁三分力系数及下游桥梁力矩系数对气动干扰效应不敏感;气动干扰效应对下游桥梁的阻力系数和升力系数的影响与间距比和风攻角有关;下游桥梁颤振导数受气动干扰效应影响大,随间距比与折算风速的变化表现出不同的规律。  相似文献   

2.
无砟轨道高速铁路斜拉桥跨度较大,常采用箱形断面主梁,在桥梁建设和运营过程中涡激振动问题不可忽视。以阜淮高速铁路颍河斜拉桥为工程背景,对主梁断面绕流进行数值模拟以及流固耦合求解,研究主梁断面的气动力参数以及竖向涡振响应。针对可能出现的明显涡振进行气动优化,并分析涡振响应对列车行车稳定性的影响。结果表明:在0°、±3°和±5°五种攻角下主梁原始断面均出现了竖向涡振,最大竖向涡振振幅均较小;在+5°攻角下主梁原始断面出现明显的竖向涡振,在检修车轨道内侧加设导流板,可显著减小主梁断面的涡振响应;涡振时最大振幅对应列车行车安全性满足要求。  相似文献   

3.
双分体式钢箱梁具有良好的颤振性能,但在常遇风速内易发生涡激振动。为研究双分体式钢箱梁的涡激振动性能及其抑振措施,以某跨径为658 m的双分体式钢箱梁斜拉桥为背景,通过节段模型风洞试验,开展检修轨道与中央格栅等一系列独立气动措施以及多种联合气动措施对主梁涡振性能的优化研究。试验结果表明:1)在常遇风速下,原始断面在5个来流攻角(α=0°,±3°,±5°)中均观测到大幅竖向涡激振动,需采取抑振措施来抑制主梁涡激振动,结构阻尼提升至1.48%时涡振振幅仍未满足限值要求,完全消除主梁涡激振动需将阻尼比提升至2.3%;2)优化检修轨道位置能有限减小主梁竖向涡激振动,减少幅度在12.8%~29.6%之间;3)在分体式双箱梁中央开槽处添加中央格栅能大幅减小主梁竖向涡振振幅,相较原始断面减少了60%以上;4)检修轨道与中央格栅联合减振效果不如独立添加中央格栅气动措施,但这2种气动措施联合稳定板能有效控制主梁涡激振动,且相较原始断面,主梁涡振振幅下降了78%以上,在此基础上对中央开槽的封堵率以及检修轨道与外侧斜腹板之间的间距进行优化,最终得到一种双分体式钢箱梁断面涡激振动抑振措施,使主梁竖向涡振振幅减少...  相似文献   

4.
以重庆寸滩长江大桥(250+880+250)m主桥为工程背景,结合数值模拟和风洞试验2种方法对宽体式扁平钢箱梁的颤振特性进行研究。通过主梁节段模型风洞试验,测定该模型在成桥态和施工态的颤振临界风速,并采用自由振动法对模型的颤振导数进行识别;使用FLUENT软件计算主梁模型的颤振导数,并由Scanlan提出的计算方法获得其颤振临界风速。结果表明:主梁上附属结构对主梁的颤振稳定性产生不利作用,因此在设计时应慎重考虑附属结构的设置;桥梁颤振临界风速可通过数值模拟方法进行预估,并可运用于桥梁的初步设计;由数值模拟方法计算求得模型的颤振导数,与扭转相关的精度远高于与竖弯相关的精度。  相似文献   

5.
以一大跨悬索桥——坝陵河大桥钢桁梁主梁断面为研究对象,通过节段模型风洞试验和高频动态天平测力试验,得到了钢桁梁主梁优化断面并试验得出三分力系数、颤振导数以及气动导纳,归纳出适合钢桁梁桥梁断面的气动导纳经验公式,改善了传统上计算抖振在气动导纳上的明显缺陷。研究成果已经应用于坝陵河大桥的建设,且可以为以后类似桥梁的抗风设计提供参考。  相似文献   

6.
新建甬州铁路桃夭门大桥为主跨666 m的分离式三箱梁斜拉桥,与既有桃夭门公路大桥并列布置且距离较近,两桥主梁间的气动干扰是大桥抗风设计中必须考虑的关键因素。基于节段模型风洞试验方法,研究新桥单独存在和新桥和既有桥梁同时存在时新桥和既有桥梁的涡振性能,分析分离式三箱梁新桥与单箱梁既有桥梁之间气动干扰效应对主梁涡振性能的影响。在新桥单独存在时,分离式三箱梁新桥产生了大幅涡振,在开槽处设置格栅板能显著降低涡振响应;此外采用CFD仿真结果显示,开槽处设置格栅板后漩涡脱落明显降低而抑制了涡振。气动干扰研究结果表明:在不同风向下,新桥和既有桥梁之间的气动干扰效应对主梁的涡振性能影响不同。新桥位于迎风侧时,新桥的涡振性能与新桥单独存在时基本一致,下游既有桥梁对其涡振性能影响很小;迎风侧新桥的存在减小了低风速下既有桥梁的涡振响应,对既有桥梁的涡振控制有利。既有桥梁在迎风侧时,背风侧新桥会增大迎风侧既有桥梁的涡振振幅,同时,受既有桥梁尾流影响,新桥的涡振性能也更为不利。提高新桥和既有桥梁的阻尼比,可以有效地抑制其涡振响应,以满足规范限值的要求。  相似文献   

7.
对我国高速铁路接触线的2∶1比例尺模型进行风洞试验,测量接触线模型在不同紊流场中不同风速下受到的顺风向阻力、横风向升力和垂直方向扭矩,分析接触线模型的阻力系数、升力系数和扭矩系数随风攻角的变化规律,研究接触线模型的截面凹槽对其气动力特性的影响;运用邓哈托垂直振动理论,分析接触线模型的舞动稳定性.结果表明:在-45°和45°风攻角附近,由于风向与接触线模型截面凹槽的斜边接近垂直,使接触线模型受到的气动阻力明显升高;紊流场的增大会降低接触线的气动稳定性,二者呈非线性关系;在无覆冰情况下接触线模型受到的扭矩极小,接触线模型舞动主要是由横风向升力的变化引起;接触线舞动的临界风速与其自振圆频率和机械阻尼成正比.  相似文献   

8.
两自由度及三自由度桥梁断面颤振导数的强迫振动识别法   总被引:2,自引:0,他引:2  
长期以来,桥梁断面颤振导数的识别都是大跨度桥梁颤抖振响应分析中的重点和难点问题。本文基于现有的非定常气动力和颤振导数的测试方法,首次在国内成功实现了在风洞中测试两自由度桥梁节段模型颤振导数的强迫振动法,并通过大量的试验验证了本测试装置的可靠性。在两自由度桥梁断面颤振导数的强迫振动法识别装置的基础上,作者和国防科技大学及同济大学风洞试验室联合研制开发了一套三自由度桥梁断面颤振导数的强迫振动法识别装置,进一步的研究正在进行中。  相似文献   

9.
针对宽高比为5的矩形断面梁进行了节段模型测压风洞试验,研究了矩形断面梁的气动力特性随风攻角的变化规律。研究结果表明:在0°~6°的风攻角范围内,风攻角对斯托罗哈数的影响很小;不同风攻角下的驰振力系数均大于0;与上表面中间位置的测点相比,上表面边缘位置测点的压力与升力和扭矩的相关性更强;上表面边缘位置测点的压力与升力和扭矩的相关性对风攻角的变化不敏感;随着风攻角的增大,上表面中间位置测点的压力与升力和扭矩的相关性显著增强。  相似文献   

10.
涡激振动是大跨度桥梁主梁在低风速下容易发生的一种风致振动现象,会影响行车安全性、舒适性和桥梁疲劳寿命,避免涡激振动的发生或抑制涡激振动振幅是桥梁抗风设计的热点问题。基于涡激振动对主梁气动外形敏感的特性,通过设计不同气动措施改善主梁的涡激振动性能,探究单个气动措施和多个气动措施组合的涡激振动抑制效果。以某π型开口截面斜拉桥工程为依托,对几何缩尺比为1∶37的刚性节段模型开展涡激振动研究,进行了风洞测振试验,并对下稳定板、检修车轨道位置和导流板等典型气动措施的抑振效果进行了测试。研究结果表明:主梁原设计断面存在明显的竖弯涡激振动现象,最大竖弯涡激振动振幅已超过规范限值;安装1道下稳定板可有效抑制竖弯涡激振动,安装多道下稳定板后,竖弯涡激振动振幅被限制,但同时会造成扭转涡激振动振幅增大,使用稳定板措施时应兼顾竖弯涡激振动和扭转涡激振动振幅的变化;检修车轨道的有无及位置变化对此截面的涡激振动性能影响较小,内移检修车轨道不能有效减小涡激振动振幅;在安装1道下稳定板的基础上增设导流板可进一步抑制涡激振动,安装下稳定板与导流板的组合措施可达到最优抑振效果。研究结果可为类似主梁断面涡激振动的气动控制措...  相似文献   

11.
以广东沿海强风区某在建中承式三主桁式大跨度钢拱桥为工程背景,通过风洞试验和理论分析,研究该桥梁施工状态和成桥状态风致响应特性。采用节段模型试验获得主梁、拱肋和拱脚的气动三分力以及主梁涡激振动特征,利用全桥气弹模型试验研究风致响应特征并与理论分析进行对比。研究结果表明:三主桁拱肋气动阻力大但是升力及扭矩小,不易发生静风失稳,拱脚气动力随风偏角变化显著;该桥主梁存在发生涡激共振的可能性,但振幅小于规范限值,且阻尼比达到1.0%时基本有效抑制了涡振;拱肋横风向抖振响应大,主梁竖向抖振响应大,施工状态拱肋最大位移达1.47 m,应合理选择施工期,避开台风期。  相似文献   

12.
在均匀流场中进行了分离双扁平箱梁涡激振动节段模型风洞试验,研究了-5°~+5°间8个不同风攻角下分离双箱梁在D/B=0.1(D为双箱梁的净间距,B为单箱梁的宽度)时的涡振特性,并将结果与单箱梁的结果进行了对比。结果显示:+5°风攻角下,上下游箱梁的涡激振动受到了抑制,表现为振幅的减小和风速锁定区间的缩短;随着风攻角的逐渐变小,这种抑制效应逐渐变弱,并转变为放大效应;+2°风攻角下,单箱梁未发生涡激振动现象,但上下游箱梁均发生了比较明显的涡激振动。  相似文献   

13.
张洪权 《科技交流》2006,36(1):37-40
介绍了桥梁选型、桥梁结构尺寸的拟定和“T”形刚构上部结构预应力体系和箱梁结构静力分析.  相似文献   

14.
为检验主跨3×340 m的挑臂式钢箱梁斜拉桥在施工阶段和运营期的抗风安全性,分别开展节段模型和全桥气弹模型风洞试验,模拟该桥在成桥状态和最不利施工阶段的风致响应.节段模型风洞试验结果表明:施工阶段和成桥状态下,该桥主梁的颤振临界风速均远大于颤振检验风速,未发生明显涡激共振.全桥气弹模型风洞试验证实在施工阶段和成桥运营阶段,实桥风速达到109.5 m/s时桥梁未发生颤振、扭转发散等静力失稳现象.增设抗风缆后,在各个试验风速下,均匀流场和紊流场中主梁竖向位移均方根最大减小幅度分别为84%和94%,扭转角均方根最大减小幅度分别为64.6%和53.8%,显著降低了施工阶段主梁风致响应,提高了桥梁施工安全性.  相似文献   

15.
高铁槽形梁斜拉桥塔梁固接结构试验研究及数值分析   总被引:1,自引:0,他引:1  
以沪昆高铁某独塔斜拉桥为研究对象,模型试验与数值模拟相结合,研究槽形截面斜拉桥的塔梁固接结构模型的试验方法、受力状态、极限承载能力以及传力机理等。研究表明:运营阶段荷载作用下,斜拉桥塔梁固接区的应力水平较低,纵向和竖向正应力在6.5 MPa以内,塔梁结合部具有较强的安全储备;在梁体抗弯强度极限荷载下,靠近固接区主跨侧槽形梁断面最先破坏,固接区截面抗弯强度大于主梁断面;槽形截面边箱梁和桥面板传力特征在主梁和塔梁固接区基本一致,边箱梁为主要受力构件;较之于塔梁固接区,主梁内的桥面板剪力滞效应更为明显。  相似文献   

16.
为满足日益增长的交通需求,多幅大跨连续钢箱梁桥应用日益广泛,多幅主梁间复杂的气动干扰效应引起的风致振动及其减振是桥梁设计和运营必须解决的问题。以某主跨180 m平行4幅连续钢箱梁桥为工程背景,设计制作4幅连续梁桥气弹模型,开展全桥气弹模型风洞试验,研究2幅和4幅梁桥的气动干扰效应,分析桥幅数量、主梁间距、并列和错列布置等因素对桥梁风致振动特性的影响。风洞试验结果表明:多幅桥梁的风致振动特性与桥幅数量、主梁间距和主梁布置方式密切相关。单幅桥梁在试验风速内发生了极小振幅涡振、没有发生驰振。并列双幅桥在小间距工况(D=0.75 m,D/B=0.06)条件下,下游桥会发生明显的尾流致涡振,增大主梁间距至大间距工况(D=13 m,D/B=0.98)后,下游桥驰振临界风速减小到40 m/s,但涡振消失。并列4幅桥在小间距条件下,下游第3幅和第4幅桥梁在30 m/s风速左右发生尾流致涡振,在大间距条件下,下游第3幅和第4幅桥风致振动幅值随着风速增大而迅速增大,发生软驰振。错列布置的小间距4幅桥在试验风速范围内没有发生明显的涡振和驰振现象,抗风性能优于小间距并列布置4幅桥。研究成果可为类似桥梁设计提供...  相似文献   

17.
CFD(计算流体动力学)方法作为风洞试验的辅助手段,已越来越广泛地应用于桥梁断面选型及抗风设计分析中。采用CFD方法,对某轨道交通大跨度桥梁进行了二维流场数值模拟,得到流场的压力、速度和旋涡分布,还得到了不同高度主梁截面在-3°、0°、3°风攻角时的三分力系数,并对其随梁高的变化规律进行了分析。  相似文献   

18.
采用几何缩尺比为1∶40的节段模型,进行天兴州公铁两用大桥气动参数的风洞试验,测量其主桁梁和列车的静力三分力系数、桁梁的气动导数。分析上、下游不同方向来流,桥上有无列车,列车不同位置和不同队列数等对桁梁和列车三分力系数的影响。在均匀流条件下,用自由振动法测量气动导数,采用加权整体最小二乘法对桁梁气动导数进行识别。分析表明:天兴州公铁两用大桥主梁断面具备气动稳定的必要条件;上游来流和下游来流的三分力系数差别不大,小攻角时差别更小;列车在下风侧时的桁梁三分力系数较列车在上风侧时大;列车在桥上运行时,会增大桁梁的升力系数和力矩系数,降低桁梁的阻力系数。  相似文献   

19.
为研究跨铁路站场的带高防护结构边箱叠合梁斜拉桥的涡振性能及抑振措施,开展1:50节段模型涡激振动风洞试验研究。试验分析风攻角(+3°,0°和-3°)以及防护结构对主梁涡振性能的影响。在此基础上,综合测试水平稳定板、梁底稳定板、风嘴、改变防护结构透风率等气动措施对桥梁涡振性能的提升效果。试验结果表明:带高防护结构的边箱叠合梁涡振性能较差,3个风攻角工况均出现了大幅竖向涡激振动;防护结构以及断面本身较钝的外形造成了主梁的气动不稳定,考虑到其本身较明显的钝体效应,建议在断面两侧安装风嘴;采用风嘴+两道梁底稳定板的方式能显著提高主梁涡振性能;在安装风嘴的基础上,增大防护结构下部实心段的透风率能够较好的控制主梁涡激振动。  相似文献   

20.
周艇 《铁道建筑技术》2020,(2):10-13,18
为研究山区峡谷高墩连续刚构桥的抗风性能,以木绒大桥为例,利用流体计算软件(CFD),模拟计算桥位处常遇风速20 m/s的情况下连续刚构桥1/4跨主梁截面在大涡模型下的-3°、0°和3°风攻角三分力系数,并与风洞试验结果进行对比验证;利用验证所得三分力系数,通过模拟计算总结在主梁中央增加0.10~0.25 h的上稳定板、下稳定板和对翼缘板进行流线化处理措施条件下的抗风效果,以期为山区峡谷地形连续刚构桥抗风设计和抗风效果优化提供可靠依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号