首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
扣件阻力是无缝线路的关键参数。为研究竖向荷载和弹条扣压力(扭矩)对扣件纵向阻力的影响,以WJ-8型扣件为研究对象,开展不同竖向荷载和扭矩下扣件纵向阻力-位移试验,得到不同工况下扣件纵向阻力-位移变化特征。试验结果表明:(1)扣件滑移之前,扣件纵向阻力-位移关系受竖向荷载的影响不显著;(2)不同竖向荷载和扭矩下扣件纵向阻力-位移关系可用幂指函数进行拟合;(3)扣件滑移阻力随竖向荷载的增加而线性递增,且竖向荷载越大,扣件滑移阻力随扭矩的增加而增加的幅度减小;(4)不同工况下扣件纵向阻力-位移曲线存在滞回效应特性,滞回曲线可采用幂指数型函数拟合得到。  相似文献   

2.
研究目的:目前,扣件在低温环境下的纵向力学性能鲜有研究。基于此,本文在冬季低温条件下进行WJ-8型常规阻力扣件不同扭矩以及竖向荷载下扣件纵向阻力与位移试验,从而得到扣件纵向阻力与扭矩和竖向荷载之间的关系。研究结论:(1) WJ-8型常规阻力扣件在冬季低温环境下,扭矩及竖向荷载对扣件纵向阻力均有影响,且竖向荷载作用的影响较扭矩更为明显;(2)不同扭矩下扣件的纵向滑移阻力与竖向荷载基本呈线性关系,不同竖向荷载下扣件的纵向滑移阻力与扭矩也基本呈线性关系;(3)有载和无载状况下,扣件系统的滑移摩擦系数变化较大,无载状况下扣件的滑移摩擦系数为0. 47,竖向荷载60 kN作用时达到了0. 52,常规阻力扣件在同一竖向荷载作用下,滑移摩擦系数随扭矩的增大而减小,有载状况下随竖向荷载的增大逐渐趋于稳定;(4)本研究成果对验证和完善无缝线路扣件纵向阻力取值计算理论具有参考价值。  相似文献   

3.
以高速铁路桥梁无砟轨道WJ-7型和WJ-8型小阻力扣件为研究对象,开展不同纵向加载速率以及竖向荷载条件下的纵向阻力试验,研究了纵向加载速率和竖向荷载对无缝线路扣件纵向阻力特性的影响,并给出了不同竖向加载条件下WJ-7型和WJ-8型小阻力扣件的纵向阻力-位移曲线,以用于梁轨相互作用精细化分析。结果表明:当竖向荷载不变时,纵向加载速率对两种小阻力扣件的动刚度和纵向阻力最大值影响较小;随着竖向荷载的增大,两种小阻力扣件的动刚度及纵向阻力均明显增大,其弹塑性临界点也逐渐增大;与竖向无载工况相比,竖向荷载为50 kN时,WJ-7型小阻力扣件最大纵向阻力、弹塑性临界点增幅分别为177.74%和87.71%,WJ-8型小阻力扣件增幅分别为320.44%和118.88%。  相似文献   

4.
研究目的:在温度作用下,简支梁桥梁体会发生热胀冷缩,长期作用下将导致桥上无砟轨道梁端扣件系统发生破坏,严重时将不能满足线路的功能要求。本文通过往复加载试验模拟温度效应下32 m简支梁桥梁端扣件破坏过程,以此研究轨下垫板滑出过程机理及其对扣件纵向阻力的影响。研究结论:(1)随着对轨道加载试验次数的增加,2 mm位移对应的扣件纵向阻力先增加随后波动式降低,扣件滑移阻力先增加后逐渐减小,而垫板窜出位移量持续增大,可以预测当加载工作继续进行时,2 mm位移对应扣件纵向阻力及滑移阻力将继续减小;(2)随着垫板窜出位移量的增加,2 mm位移处扣件纵向阻力先增加后缓慢减小,扣件滑移阻力先有所增加而后逐渐减小;(3)扣件垫板窜出过程中,垫板纵向拉长,厚度减小,弹性降低,轨下橡胶垫板的弹性位移逐渐减小,且钢轨更易产生滑移;(4)在往复加载过程中,影响扣件纵向阻力的因素有两个:垫板表面的粗糙度及垫板窜出位移量,前期阶段垫板表面的粗糙度为主要影响因素,而后期阶段垫板窜出位移量影响更大;(5)本研究成果对于指导无砟轨道线路扣件的养护维修具有一定的参考意义。  相似文献   

5.
为得到采用聚四氟乙烯胶垫的WJ-7型扣件纵向阻力特性,在不同工况下对扣件纵向阻力进行试验测试,并建立桥上CRTSI型板式无砟轨道无缝线路计算模型,分析采用聚四氟乙烯胶垫扣件系统在桥上无缝线路的使用性能。研究结果表明:对比普通胶垫,WJ-7型扣件采用聚四氟乙烯胶垫可以显著降低扣件纵向阻力,但容易发生胶垫窜出现象,将聚四氟乙烯胶垫与普通胶垫作黏结处理后对其纵向阻力影响很小;扣件纵向阻力随聚四氟乙烯胶垫厚度增大而减小;轨底作除锈处理对采用普通轨下胶垫与复合胶垫的扣件系统纵向阻力影响较大,对采用聚四氟乙烯胶垫扣件系统纵向阻力影响很小;与采用复合胶垫相比,扣件系统采用聚四氟乙烯胶垫时钢轨附加力及纵向位移会略微增大,当胶垫窜出时,在桥端2块轨道板采用聚四氟乙烯胶垫可明显减小钢轨附加力及纵向位移,并显著降低凸型挡台承受的纵向力。  相似文献   

6.
为确定轨条碎弯时WJ-7型扣件的横向刚度取值,在实验室条件下,对一段安装了一组扣件的短钢轨加载横向力,测量扣件铁垫板和钢轨截面轨头、轨腰、轨底的横向位移,考虑到试验误差,只取均匀性较好5组数据分析横向力与位移之间的关系。试验结果表明:铁垫板位移随横向力的加载呈线性增加;以铁垫板产生单位位移所需施加的横向力表征横向刚度,常阻力扣件横向刚度在143.7~162.1 kN/mm,小阻力扣件横向刚度在130.2~138.9 kN/mm;钢轨截面各位置横向位移曲线由二次抛物线和直线两部分组成。  相似文献   

7.
有碴桥上无缝线路采用小阻力扣件,在梁轨相对约束的条件下,钢轨、轨枕及梁跨结构三者之间将产生较明显的相对位移,以往的计算模型没有考虑轨枕和钢轨相对位移的影响,与有碴轨道小阻力扣件桥上无缝线路工况存在较大偏差.为此,建立了一种能综合考虑钢轨、轨枕、梁体三者相互作用的有碴轨道小阻力扣件桥上无缝线路附加力计算力学模型,给出了算例,对不同扣件纵向阻力工况下计算结果进行了对比.结果表明:扣件阻力明显影响钢轨及墩台附加力的变化,扣件阻力较小时,作用在墩台上及钢轨上的附加力变化较快,扣件阻力较大时,变化较慢;墩台刚度不同,则作用在墩台上及钢轨上各种附加力随扣件阻力的变化规律也有很大差别.  相似文献   

8.
桥上无缝线路附加力计算模型研究   总被引:2,自引:0,他引:2  
有碴桥上无缝线路采用小阻力扣件,在梁轨相对约束的条件下,钢轨、轨枕及梁跨结构三者之间将产生较明显的相对位移,以往的计算模型没有考虑轨枕和钢轨相对位移的影响,与有碴轨道小阻力扣件桥上无缝线路工况存在较大偏差.为此,建立了一种能综合考虑钢轨、轨枕、梁体三者相互作用的有碴轨道小阻力扣件桥上无缝线路附加力计算力学模型,给出了算例,对不同扣件纵向阻力工况下计算结果进行了对比.结果表明:扣件阻力明显影响钢轨及墩台附加力的变化,扣件阻力较小时,作用在墩台上及钢轨上的附加力变化较快,扣件阻力较大时,变化较慢;墩台刚度不同,则作用在墩台上及钢轨上各种附加力随扣件阻力的变化规律也有很大差别.  相似文献   

9.
结合我国高速铁路小阻力扣件系统的现场应用情况,首先采用有限元仿真软件对不同类型小阻力扣件的节点数量与钢轨纵向阻力之间的关系进行了研究。结果表明:不同扣件节点数时测得的钢轨纵向阻力换算成单扣件节点后的钢轨纵向阻力略有差异,其主要原因是单扣件节点所承受的钢轨重力有所变化,但该因素影响很小;钢轨纵向阻力与扣件节点数量之间存在线性关系。然后通过室内试验对加载位置、加载方式、钢轨滑移量等因素进行了分析,确定采用拉钢轨的加载方式,钢轨滑移量按3 mm控制进行小阻力扣件钢轨纵向阻力测试。结果显示:不同扣件节点数时测得的钢轨纵向阻力换算成单扣件节点后的钢轨纵向阻力基本相当。试验结果与理论分析结果相吻合。  相似文献   

10.
研究目的:目前的梁轨伸缩力算法较多使用常量阻力计算模型,当跨径很大时,有可能不存在有力学意义的解。为了得到准确的桥上无缝线路钢轨在温度作用下的伸缩力解析算法,解决桥梁温度跨度取值以及合理的纵向阻力选择问题,本文采用非线性纵向阻力模型,根据扣件进入塑性变形区的位置将无缝线路分成若干个区段,通过建立平衡微分方程组,求解得到钢轨位移及伸缩力。研究结论:(1)依照无缝线路规范设计条件,计算了不同纵向阻力、不同跨度桥梁上钢轨最大应力以及梁轨最大相对位移;(2)在不考虑制动力的情况下,可得出基于钢轨强度限值下不同纵向阻力对应的温度跨度限值;(3)以70 mm和90 mm作为断缝宽度限值,得出线路纵向阻力的最小取值分别为17 N/(mm·线)和13 N/(mm·线);(4)本文算法可为桥上无缝线路的桥梁温度跨度及线路纵向阻力的选择提供依据。  相似文献   

11.
广州地铁4号线高架线路采用了桥上小阻力扣件系统无缝线路,小阻力扣件系统由于纵向阻力较小,对无缝线路轨条爬行的约束较小,这在伤损钢轨更换时是需要重点考虑的问题。文章以4号线无缝线路钢轨更换为例,探讨城市轨道交通桥上小阻力扣件系统无缝线路钢轨更换技术。  相似文献   

12.
无缝线路稳定性分析有限元模型   总被引:8,自引:1,他引:7  
利用有限元法建立包含钢轨、扣件、轨枕和道床阻力为一体的轨道框架模型。研究在温度力作用下无缝线路的臌曲失稳问题。推导相应的数值计算公式并编制了计算程序。轨道框架模型由4种单元组成:用考虑钢轨非线性变形的平面梁单元代表钢轨;无几何尺寸的两结点弹簧单元模拟钢轨扣件;弹性基础上的普通平面梁单元表示轨枕;弹簧单元模拟道床的横向、纵向阻力,并考虑了道床阻力的非线性特性。运用该模型,分析道床横向阻力、轨枕失效、曲线半径和线路初始弯曲对无缝线路稳定性的影响,得到不同工况下钢轨横向位移-温度曲线、钢轨内应力分布及钢轨和轨枕的横向变形分布曲线。  相似文献   

13.
青藏铁路弹条Ⅱ型扣件系统低温阻力特性试验研究   总被引:1,自引:0,他引:1  
扣件系统必须具备的普遍功能是,弹性的吸收钢轨力并传递其至轨枕,提供防爬阻力去限制无缝线路钢轨的位移和断轨后产生的缝隙;对于地处高寒地区的青藏铁路,扣件系统的防爬阻力性能显得更加重要。测试了低温状态下扣件系统的防爬阻力性能。试验结果表明:与常温对比,温度为-20℃时,扣件阻力降低5%左右,而温度为-40℃时,扣件阻力降低20%左右;在低温时,青藏铁路无缝线路试验段扣件系统提供给钢轨的阻力可保证大于轨枕纵向阻力。  相似文献   

14.
WJ7、WJ8型扣件纵向阻力现场试验与研究   总被引:3,自引:3,他引:0  
我国客运专线无砟轨道设计中广泛采用WJ 7、WJ 8型扣件,其扣件纵向阻力是进行无缝线路设计的重要参数。为合理确定WJ 7、WJ 8型扣件纵向阻力,设计一种有效的无砟轨道扣件纵向阻力测试方案,简述基本原理,通过在武广客专武汉综合试验段对WJ 7、WJ 8型常阻力扣件及WJ 7、WJ 8型小阻力扣件的纵向阻力现场测试,以及对实测数据的数理统计分析,确定了WJ 7、WJ 8型扣件纵向阻力的合理取值,研究结果可为无砟轨道无缝线路设计扣件纵向阻力取值提供参考。  相似文献   

15.
为研究钢轨伸缩调节器及小阻力扣件对大跨度公铁平层斜拉桥上梁轨相互作用规律的影响,以某大跨度公铁平层斜拉桥为研究对象,基于梁轨相互作用理论,建立大跨度公铁平层斜拉桥上无缝线路纵向力分析有限元模型,对不同工况下斜拉桥上梁轨相互作用规律进行研究。研究结果表明:在公路及铁路列车荷载作用下,对于大跨度公铁平层斜拉桥上无缝线路而言,在主桥两侧设置钢轨伸缩调节器,可大幅降低梁轨间的相互作用力,并能满足钢轨强度及稳定性限值要求;当在主桥两侧布置钢轨伸缩调节器且伸缩调节器基本轨一侧分别铺设100 m小阻力扣件时,钢轨总应力及纵向总压力分别为243.6 MPa, 716.9 kN,能够满足钢轨强度及轨道稳定性要求,且减少小阻力扣件的应用。  相似文献   

16.
研究目的:扣件是地铁道岔关键传力部件,其纵向阻力对道岔各钢轨的受力与位移有着重要影响。为明确不同扣件轨下垫板、不同纵向阻力下地铁道岔的纵向力学特性,对其扣件进行试验及数值模拟分析。研究结论:(1)相比橡胶垫板,采用聚酯垫板时,道岔基本轨纵向位移减小13%以上,尖轨纵向位移减小2%左右,道岔各钢轨纵向受力变化不大;(2)随着扣件纵向刚度的增加,道岔结构的纵向位移和基本轨纵向受力逐渐减小,虽然导轨温度力略有增大,但增幅很小,不会影响结构安全性;(3)在地铁道岔中采用聚酯垫板并适当增大扣件纵向刚度是合理的优化方向;(4)本研究成果可用于地铁道岔扣件轨下垫板选型以及阻力优化设计。  相似文献   

17.
混凝土桥面轨道纵向位移阻力的研究   总被引:1,自引:0,他引:1  
对桥上无缝线路,梁轨之间存在由相对位移引起的轨道纵向位移阻力,使桥梁与轨道形成一个相互作用,相互约束的力学平衡体系,因此,轨道纵向位移阻力是分析无缝线路钢轨和桥梁受力的重要参数。由于道床的散粒体特性以及现场测试条件的限制,国内外在这方面的试验研究较少,轨道纵向位移阻力与梁轨相对位移和轨道竖向受载的关系,可采用梁体与钢轨之间产生一系列的相对位移,并测定钢轨的受力大小来确定。本文通过室内模拟试验,介绍了轨道纵向位移阻力的试验分析结果,轨道纵向位移阻力是分析无缝线路钢轨和桥梁受力的重要参数。本文通过两个1:4缩尺室内模拟结构试验,介绍了轨道纵向位移阻力的试验分析结果。  相似文献   

18.
为了研究线路纵向阻力形式对桥上无缝线路纵向力的影响,基于梁轨相互作用原理,采用有限元方法建立了线-桥-墩一体化计算模型,以多跨简支梁为例,分析了常阻力、双线性和幂指数型等不同形式的线路阻力对计算桥上无缝线路时的影响。计算结果表明:常量阻力下计算得到的钢轨伸缩力较双线性及幂指数型阻力要小,且随温度跨度的增加双线性和幂指数型计算结果越来越接近,而常量阻力与两者差别逐渐增大;计算钢轨制动力时,常量阻力计算结果要小得多,且梁轨相对位移较大,已超出我国检算标准;不同钢轨降温幅度下,双线性和幂指数型阻力计算的钢轨断缝值基本相同,但却远小于常量阻力,且钢轨降温幅度越大,差别越大。由此可知,应重视线路阻力形式的选取,尽量由实际测试数据进行拟合,使其能模拟真实的现场情况。  相似文献   

19.
为分析大坡道地段米轨扣件系统线路整体稳定性,以某山区拟建的米轨铁路为背景,通过道床阻力试验获取该线路纵向阻力参数,建立齿轨轨排有限元模型分析不利荷载情况下的道床纵向移动,在此基础上以正常安装状态下钢轨与轨下胶垫产生的相对滑移量作为评价指标,分析大坡道情况下米轨-扣件系统的整体稳定性.研究结果表明:(1)螺栓扭矩至少达到...  相似文献   

20.
为了分析考虑阻力弹塑性变化的高速铁路桥上无缝道岔纵向力演变机理,使用试验与理论分析相结合的方法,全面考虑了道床纵向阻力的弹、塑性变化特征。进行扣件系统反复加卸载试验和有砟道床阻力测试,通过研究线路纵向阻力退化现象,分析其产生机理,并构建无缝道岔新型线路阻力本构模型。以高速铁路18号无缝道岔为例,在ANSYS中建立考虑边界效应的岔-桥-墩一体化模型,将试验所得参数与规范值进行仿真分析对比,深入分析考虑阻力弹塑性变化时对桥上无缝道岔受力及变形的影响。结果表明,当梁轨相对纵向位移较小时,使用规范规定的线路纵向阻力进行高速铁路桥上无缝道岔受力与变形分析,会使计算结果与实际相比普遍偏小。当出现阻力强化现象时,使用规范值进行无缝道岔的受力变形计算所得的结果偏于不安全。建议在实际工程中应尽量进行大量的试验分析,从而修正规范值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号