首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为求解PC刚构桥不同施工阶段的标高控制时变可靠度,以云南省怒江州兑房河特大桥为背景进行研究。选取混凝土容重和弹性模量、预应力钢绞线张拉控制应力和弹性模量4种随机因素,利用拉丁超立方抽样法产生随机样本;代入桥梁有限元模型,计算各组样本对应的目标变量;采用遗传算法寻找最优参数,建立该桥各施工阶段的标高控制SVM模型;结合蒙特卡洛法,求解施工期标高控制时变可靠度,并利用正交试验对可靠度灵敏度进行分析。结果表明:PC刚构桥施工期标高控制可靠度指标随悬臂自由端挠度偏差容许值的增大而增大;当结构分别处于短悬臂、中悬臂、最大悬臂阶段时,建议悬臂自由端挠度偏差最大容许值分别取4,10,20mm;影响因素对PC刚构桥施工期标高控制可靠度的影响由大至小依次为混凝土容重、预应力钢绞线张拉控制应力、混凝土弹性模量、预应力钢绞线弹性模量。  相似文献   

2.
为了深入研究PC梁桥结构参数对最大悬臂结构力学性能的影响,结合实体工程,建立了大跨预应力混凝土粱桥的最大悬臂段有限元模型,分析了材料容重、混凝土弹性模量、顸应力参数偏差对最大悬臂施工阶段主梁线形的影响程度,研究了自重偏差对主梁结构内力和应力的影响,探讨了预应力对悬臂结构的作用效应.研究结果表明:材料容重和混凝土弹性模量为该桥梁结构的主要设计参数,桥梁自重偏差对结构线形影响最为明显;在预应力效应的作用下,主梁纵向产生竖向正位移,随着自重的增大,主梁同一截面正弯矩相应减小,墩顶负弯矩增大,主梁的上缘压应力会减小,下缘压应力会增大,且下缘应力受其影响的程度更大.  相似文献   

3.
混凝土早龄期的抗压强度与弹性模量的历时变化模型   总被引:1,自引:0,他引:1  
杨伟军  王艳 《中外公路》2007,27(6):149-152
施工期钢筋混凝土结构是不断随时间变化的"时变结构",建立结构的抗力历时变化模型对分析施工期结构的安全稳定性有重要的作用。由于抗力的时变模型是以材料性能的时变模型为基础,该文通过对不同设计强度的混凝土试块进行早龄期的轴心抗压强度和弹性模量的试验研究,利用回归拟和方法提出了混凝土早龄期轴心抗压强度和弹性模量的历时变化模型,有助于对混凝土早期力学性能及其发展规律的认识,同时也可为混凝土结构施工期的早期裂缝控制和可靠性分析提供参考。  相似文献   

4.
为了研究早龄期机制砂混凝土在单轴受压状态下抗压强度与弹性模量的时效关系和本构模型,通过对8组不同龄期的C60机制砂混凝土试件进行立方体抗压强度试验、静力受压弹性模量试验和单轴受压应力-应变曲线试验,并参考多种已有研究模型,建立了早龄期机制砂混凝土在单轴受压状态下的抗压强度与弹性模量时效关系模型和分段式应力-应变本构模型。结果表明,采用的抗压强度与弹性模量时效关系模型和分段式应力-应变本构模型与试验数据吻合效果理想,能够较好地描述早龄期C60机制砂混凝土在单轴受压状态下的力学性能。  相似文献   

5.
《公路》2021,(5)
梁拱组合桥构造相对复杂,施工过程不确定因素对桥梁线形及受力影响较大。通过建立精细化空间杆系有限元模型,研究预应力张拉误差和混凝土荷载等力学参数变化对结构应力及桥梁线形的影响。分析结果表明:当主梁混凝土自重比设计值大时,主梁顶板压应力减小,底板压应力增大,跨中合龙段附近主梁向上挠度减小;在梁拱组合桥成桥阶段,预应力张拉误差对主梁跨中挠度影响较为突出,梁拱组合桥在最大悬臂阶段预应力误差对桥墩附近主梁的挠度影响相对较小,越靠近悬臂端预应力误差对主梁的挠度影响越大。研究成果可为梁拱组合桥的设计及施工过程提供技术参考。  相似文献   

6.
针对大跨度预应力混凝土连续箱梁悬臂施工节段挠度计算值和实测值存在偏差的问题,基于灵敏度原理,运用Midas/Civil建立陆中湾江桥有限元模型,分别对混凝土容重、混凝土弹性模量、几何尺寸、预应力荷载、预应力束弹性模量等设计参数进行敏感性分析,得出影响主梁位移的主要设计参数,并对其进行了相应调整,实现挠度理论值和实测值相吻合,保证桥梁顺利合龙和成桥线形达到设计状态。  相似文献   

7.
本文阐述了变截面PC连续箱梁桥混凝土收缩效应的理论及有限元仿真研究,为研究收缩效应对PC梁桥施工及运行阶段中的成桥线形和截面内力响应的影响,以某三跨变截面PC连续箱梁桥为例,基于3D仿真模型分析环境湿度、加荷龄期、桥梁运行时间影响连续梁混凝土收缩效应的参数如进行连续梁桥内力分布及位移响应的敏感性分析。结果表明:混凝土连续梁收缩效应随环境相对湿度和桥梁运行周期的增大而增大,随着加荷龄期的推迟而减小,基于变截面PC箱梁竖向位移和截面内力响应的参数敏感性分析,提出了施工过程中减少混凝土收缩效应的建议。  相似文献   

8.
吴湛 《公路与汽运》2023,(5):124-127+131
采用MIDAS/Civil建立某大跨预应力连续梁桥有限元模型,分析不同施工阶段荷载作用下桥梁位移和应力变化及施工过程中温度对主梁挠度的影响。结果表明,一个梁段施工完成后会影响前一个梁段标高,但各梁段控制偏差变化趋势大致相同;梁段悬臂越长,浇筑、张拉前后挠度越大;温度对悬臂梁段变形有很大影响,温度越高,悬臂竖向变形越大;大跨径连续梁桥悬臂施工时,预应力张拉产生的位移只能抵消一部分恒载位移;浇筑、张拉前后箱梁实测应力大多小于理论值,最大悬臂时梁段的预应力储备增大。  相似文献   

9.
为了解矮塔斜拉桥施工至运营阶段主梁的应力变化,文章结合一座主梁采用单箱三室大悬臂变截面PC连续箱梁的混凝土矮塔斜拉桥,分析计算截面的应力发展情况和运营阶段徐变效应引起的矮塔斜拉桥主梁应力变化,结果表明:矮塔斜拉桥靠近主塔的无索区,运营30a后箱梁下缘应力值增值大在2MPa左右,而矮塔斜拉桥的无索区较长,应适当增加无索区箱梁下缘的应力储备。  相似文献   

10.
文章以株洲建宁大桥斜拉桥为工程背景,建立了该桥主梁最大双悬臂、主梁最大单悬臂和成桥状态3个工况的空间有限元模型,通过计算结果的比较分析,研究了斜拉桥单箱三室主梁剪力滞效应,并经实桥测试验证了有限元数值计算结果。计算结果表明:斜拉桥单箱三室主梁部分箱梁截面顶板剪力滞效应显著;部分箱梁截面顶板最大应力出现在翼缘悬臂端;与顶板相比,箱梁底板剪力滞效应不明显;部分箱梁截面施工过程中的剪力滞效应较成桥状态显著。针对斜拉桥单箱三室主梁剪力滞效应的特点,提出用截面正应力分布曲线或剪力滞系数曲线表述其剪力滞效应的方法,对同类型桥梁箱梁设计提出了一些建议。  相似文献   

11.
设计并使用了特制轻型菱形挂篮,采用Midas civil软件进行计算与复核,确保了主桁体系各构件计算最大应力值均满足材料容许应力,确定了施工初期按30 mm设置箱梁预拱度。在施工过程中对主梁控制截面进行应变监测,对主梁和桥墩典型截面温度场监测,根据仿真计算结果提供施工监控指令。针对悬浇主梁施工,监控指令根据参数分析结果给出主梁节段砼浇筑的方量误差限制值和混凝土浇筑前后前端主梁节段的挠度变化预测值。对悬灌混凝土施工技术分析,提出了以强度和砼弹性模量结合养护龄期控制张拉时间的方法,在浇注主桥右幅5#墩0#块中取得了良好的效果。  相似文献   

12.
针对节段现浇预应力混凝土箱梁后浇湿接缝在早龄期因收缩导致的开裂问题,以嘉鱼长江公路大桥为背景,通过试验测试了该桥施工阶段箱梁混凝土早龄期力学性能,得到了箱梁节段混凝土的收缩预测模型。基于此,采用有限元软件Midas/FEA建立了湿接缝及相邻节段箱梁的有限元模型,分析了湿接缝在混凝土收缩作用下的应力场,并对不同的预应力张拉方案进行了分析。结果表明:湿接缝在混凝土收缩和相邻节段约束作用下,其在混凝土浇筑后第3 d在结合面位置由收缩导致的拉应力达到了1.8 MPa,为该龄期混凝土抗拉强度的87%,因此需在此时进行预应力的张拉以降低混凝土拉应力,防止混凝土在早龄期开裂;若湿接缝按常规方案张拉预应力,湿接缝早龄期最大主拉应力均小于混凝土即时抗拉强度,但其28 d最大主拉应力为2.75 MPa,为该龄期混凝土抗拉强度的93%,存在开裂风险;在该文提出的张拉方案下,湿接缝在早龄期最大主拉应力比常规方案降低了22.2%~32%,有效保证了后浇湿接缝在早龄期的抗裂性要求。  相似文献   

13.
通过小梁试件三分点加荷试验及棱柱体试件轴心抗压试验,分别测试多孔混凝土的弯拉弹性模量与轴心抗压弹性模量。对试验结果进行回归分析,得出多孔混凝土弯拉弹性模量与弯拉强度、抗压弹性模量与轴心抗压强度之间分别符合相关性良好的幂指数关系,并据此得出多孔混凝土弯拉弹性模量与弯拉强度、抗压弹性模量与轴心抗压强度的对应关系表,作为其弹性模量的推荐值。  相似文献   

14.
曲线箱梁桥悬臂施工应力与线形现场测试研究   总被引:1,自引:1,他引:0  
通过现场监测和数值模拟手段,分析了预应力混凝土曲线箱梁桥悬臂施工过程中的应力和线形变化规律,讨论了曲线箱梁弯扭耦合效应及日照温度梯度对曲线箱梁桥内力和线形的影响。研究结果表明,曲线箱梁两侧翼缘板应力差值、竖向位移差值及箱梁径向位移随着箱梁曲率、墩身高度和悬臂长度的增大而增大;日照温度应力随温度梯度、约束条件和悬臂长度的变化而变化,其量级可能超过结构的活荷载水平,温度对箱梁标高的影响也不容忽视,且温度应力和温度位移具有滞后效应。研究结论可为预应力混凝土曲线箱梁桥的设计和施工提供有益的参考。  相似文献   

15.
针对大悬臂预应力混凝土箱梁异形结构受力问题,根据相似原理,制作大悬臂箱梁模型,应用大型通用有限元分析软件ANSYS,以三维实体单元对大悬臂PC箱梁模型进行空间数值仿真分析研究.考虑大悬臂横梁偏载和大悬臂边跨中载两种工况,研究了两种工况下大悬臂横梁挠度及受力状况.研究结果表明,空间数值仿真与试验结果接近,局部精细分析技术可提高分析精度;由于模型桥的宽跨比较大,大悬臂加载桥的横向效应明显,大悬臂横梁横桥向类似于单梁效应,偏载作用下模型桥大悬臂向荷载作用处倾斜,中载作用下模型桥大悬臂呈倒U形,并伴有薄膜效应.  相似文献   

16.
《公路》2017,(8)
由于结构尺寸、材料性能和荷载存在随机性,连续刚构桥主梁挠度难以与设计的理想状态吻合,提出了基于随机响应面的主梁挠度控制可靠度分析法,评估不同施工阶段达到预定挠度控制目标的概率。此外,为了避免复杂积分,利用多重响应面法求解施工全过程的挠度控制失效概率。考虑预应力束张拉控制应力、混凝土强度、一期恒载与二期恒载等主要施工参数的不确定性,利用上述方法对李家洼大桥进行了主梁挠度控制可靠度分析。结果表明,主梁挠度控制的失效概率随着悬臂的伸长而升高,在最大悬臂阶段达到最大值。在桥梁合龙以后,失效概率回落至较低水平。另外,失效概率与主梁挠度控制容许偏差值负相关。  相似文献   

17.
某桥为(34+40+34)m预应力混凝土连续箱梁桥,受上层高架钢结构滑落撞击,2跨部分翼缘板严重开裂。为研究该桥损伤情况及受损后结构的安全性,采用MIDAS Civil有限元软件建立受损箱梁有限元模型,评估主梁截面特性,计算受损前后主梁的应力和挠度;采用ANSYS软件进行桥梁撞击仿真分析。结果表明:单侧翼缘板受损使主梁截面面积削弱7.7%,使主梁截面抗弯刚度减小6.6%;受损前后主梁应力和位移变化较小,受损后满足规范要求,但应力储备很小;在撞击荷载作用下,翼缘板和腹板交界处顶板开裂,与实际情况基本吻合。根据检测及评估结果,采取将第二、第三跨防撞护栏切除60m,受损主梁翼缘板从悬臂根部整体切除,将原后浇调平层凿除后重新浇筑等加固措施。该桥加固后的动静载试验结果表明,主梁的加固部分能很好地与保留的主梁共同受力,主梁的整体性能有较大的提高。  相似文献   

18.
为研究大跨度叠合梁斜拉桥施工阶段极限状态下的受力性能和破坏机理,以西固黄河大桥主桥为背景,采用ANSYS软件建立全桥有限元模型,计算该桥在最大双悬臂、最大单悬臂和二期恒载等典型施工阶段的非线性稳定安全系数,分析结构在各施工阶段的斜拉索应力、塔梁连接处Mises应力和塔顶、主梁跨中的荷载~位移曲线。结果表明:该桥各典型施工阶段的非线性稳定安全系数均满足不小于2的设计要求;当主桥达到极限承载力时,部分斜拉索先破断,破坏过程合理;最大双悬臂施工阶段桥塔整体未达到屈服状态,最大单悬臂施工阶段和二期恒载施工阶段塔梁连接处出现塑性区;塔顶和主梁跨中的荷载~位移曲线具有显著的非线性效应。  相似文献   

19.
运用有限元分析软件MIDAS/CIVIL对江珠荷麻溪大桥张拉预应力筋下一段梁浇筑中两个典型的荷载工况进行分析计算,对矮塔斜拉桥的主梁挠度和应力的非线性效应进行分析,结果表明:未进行挂索施工时,箱梁最大张拉应力出现在主梁顶部;随着挂索施工的推进,主梁顶部的应力值不断增大,并由主梁顶部向下,应力值不断增大;当实行浇筑合拢后,主梁拉索固定区出现最大应力;矮塔斜拉桥主梁挠度和应力受几何非线性效应表现出不同特性。几何非线性效应对挠度的影响程度由大到小依次为垂度效应-大位移效应-梁柱效应,此时线性效应对主梁挠度的影响远低于非线性效应的作用;在应力分析中,影响顶板应力的几何非线性因素由大到小为:梁柱效应-大位移效应-垂度效应,影响底板应力的几何非线性因素由大到小为:垂度效应-大位移效应-梁柱效应。  相似文献   

20.
呼准铁路黄河特大桥主桥为(98+5×168+98)m预应力混凝土刚构—连续组合箱梁桥.主梁采用C55混凝土单箱单室变截面箱梁,三向预应力体系,在箱梁内预留体外预应力钢束张拉构件.主墩均采用圆端形截面空心墩(中间2个桥墩与主梁固结),摩擦桩基础.为适应主梁较大的温度伸缩量,开发了大位移伸缩装置及大位移活动支座.采用MIDAS Civil软件对该桥进行静、动力分析,分析结果表明,该桥在施工及运营阶段的刚度、强度均满足规范要求,且具有良好的抗震性能.该桥采用悬臂浇筑法施工,主梁合龙顺序为先边跨后中跨.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号